
Low-Depth Parallel Algorithms for the
Binary-Forking Model without Atomics

Zafar Ahmad1, Rezaul Chowdhury1, Rathish Das1, Pramod Ganapathi1, Aaron Gregory2,
and Mohammad Mahdi Javanmard1

1Department of Computer Science, Stony Brook University
2Department of Applied Mathematics & Statistics, Stony Brook University

Abstract

The binary-forking model is a parallel computation model, formally defined by Blelloch et
al. very recently, in which a thread can fork a concurrent child thread, recursively and asyn-
chronously. The model incurs a cost of ⇥(log n) to spawn or synchronize n tasks or threads. The
binary-forking model realistically captures the performance of parallel algorithms implemented
using modern multithreaded programming languages on multicore shared-memory machines. In
contrast, the widely studied theoretical PRAM model does not consider the cost of spawning
and synchronizing threads, and as a result, algorithms achieving optimal performance bounds
in the PRAM model may not be optimal in the binary-forking model. Often, algorithms need
to be redesigned to achieve optimal performance bounds in the binary-forking model and the
non-constant synchronization cost makes the task challenging.

Though the binary-forking model allows the use of atomic test-and-set (TS) instructions
to reduce some synchronization overhead, assuming the availability of such instructions puts
a stronger requirement on the hardware and may limit the portability of the algorithms using
them. In this paper, we avoid the use of locks and atomic instructions in our algorithms except
possibly inside the join operation which is implemented by the runtime system.

In this paper, we design e�cient parallel algorithms in the binary-forking model without
atomics for three fundamental problems: Strassen’s (and Strassen-like) matrix multiplication
(MM), comparison-based sorting, and the Fast Fourier Transform (FFT). All our results improve
over known results for the corresponding problem in the binary-forking model both with and
without atomics.

We present techniques for designing e�cient algorithms without using locks and atomic
instructions. We use extra space to prevent the work blow-up in the highly parallel asynchronous
computations performed by our MM and FFT algorithms. Extra space also allows us to avoid
the use of atomic TS instructions in our sorting algorithm as well as to achieve a stronger bound
(i.e., with high probability) on its work. Though space plays a major role in the design of all
our algorithms, our MM and FFT algorithms do not use asymptotically more space than their
PRAM counterparts. We present space-adaptive algorithms for MM and sorting that achieve
provably good performance bounds for any given amount of space.

1

ar
X

iv
:2

00
8.

13
29

2v
2

 [c
s.D

S]
 2

 S
ep

 2
02

0

1 Introduction

We present e�cient algorithms with optimal/near-optimal span1 for several fundamental problems
in the binary-forking model without locks and atomic instructions. The binary-forking model was
introduced in Blelloch et al. [6] (see also [1, 3, 4, 5, 20]) to accurately capture the performance of al-
gorithms designed for modern multi-core shared-memory machines. In this model, the computation
starts with a single thread, and as the computation progresses, threads are created dynamically and
asynchronously; the computation finishes when all threads end. A thread can spawn/fork a concur-
rent asynchronous child thread while it progresses simultaneously and such forking of threads can
happen recursively; hence the model is called the binary-forking model. The model also includes a
“join” operation to synchronize the threads. Though the model introduced in [6] allows the use of
atomic instructions, we do not use them in this paper.

The binary-forking model is closely related to the well-studied PRAM model [29]. The PRAM
model is strictly more powerful than the binary-forking model; however, it does not correlate well
with modern architectures. In the PRAM model, computation progresses in synchronous steps.
Modern architectures employ new techniques such as use of multiple caches, processor pipelining,
branch prediction, hyper-threading, and many more, which give rise to many asynchronous events
such as cache misses, varying clock speed, interrupts, etc., thus demanding the development of a
parallel computation model where computation can proceed asynchronously. Asynchronous thread
creation in the binary-forking model makes it an ideal candidate for modeling parallel computation
in modern architectures. As pointed out in [6], this is the model underlying many widely used
parallel programming languages/environments such as Cilk [25], the Java fork-join framework [22],
Intel TBB [39], and the Microsoft Task Parallel Library [37].

One can trivially reduce any algorithm designed for the PRAM model to an algorithm for the
binary-forking model, incurring an O(log n)-factor blow-up in the span while keeping the work2

asymptotically the same as in the PRAM model. Spawning n threads takes ⇥ (1) time and ⇥ (n)
work in the PRAM model—making the synchronization cost (span) constant. This synchronization
can be simulated by using a binary tree of log n depth and ⇥ (n) nodes in the binary-forking model.
Each internal node in the binary tree corresponds to a binary-forking operation, and the n leaves
correspond to the n spawned threads.

A direct simulation of an optimal-span PRAM algorithm may not produce an algorithm with
optimal span in the binary-forking model. For example, Cole’s parallel merge sort [16] achieves op-
timal ⇥ (log n) span and ⇥ (n log n) work in the PRAM model. The binary-tree reduction increases
the span to ⇥

�
log2 n

�
while keeping the work asymptotically the same. On the other hand, by

increasing work to ⇥
�
n2

�
, it becomes trivial to get a ⇥ (log n) span sorting algorithm — each item

independently computes its rank in the final sorted list in ⇥ (log n) time and ⇥ (n) work by compar-
ing itself with all n elements. However, neither algorithm is optimal in the binary-forking model —
the former has non-optimal span while the latter performs non-optimal work. Cole and Ramachan-
dran [17] presented a deterministic sorting algorithm with O (log n log log n) span and optimal
⇥ (n log n) work in the binary-forking model. Recently, Ramachandran and Shi [34] gave a data-
oblivious sorting algorithm in the binary-forking model with optimal work and O (log n log log n)
span. Very recently, Blelloch et al. [6] used atomic test-and-set operations to design a randomized
sorting algorithm with ⇥ (log n) span w.h.p.3 in n and ⇥ (n log n) work in expectation. Hence,
finding an optimal (both in span and work) sorting algorithm without using atomic instructions

1Span/depth is the running time of an algorithm with an unbounded number of processors.
2Work is the number of operations performed by a parallel algorithm on a serial computer.
3An event ⇠ occurs with high probability (w.h.p.) in n provided it occurs with probability at least 1 � c

n↵ for
constants ↵ � 1 and c > 0.

2

remains an interesting and non-trivial open problem in the binary-forking model. We encounter
the span blow-up problem when running other fundamental low-span PRAM algorithms, such as
those for Strassen’s matrix multiplication and Fast Fourier Transform (FFT), in the binary-forking
model. Both algorithms have ⇥ (log n) span in the PRAM model, which blow up by a factor of
log n and log log n, respectively, in the binary-forking model.

The binary-forking model introduced in [6] allows the use of atomic test-and-set (TS) operations.
When performed on a shared memory location L, TS performs the following as a single undivided
operation: it reads the value stored at L and if the value is zero, sets L to one and returns zero,
otherwise, returns one without changing L. While a TS operation makes the binary-forking model
arguably more powerful, it also puts a stronger requirement on the memory hardware. Hence, an
algorithm may become more portable by avoiding the use of TS. Such an algorithm is also arguably
more elegant [6]. While several parallel algorithms have been designed for the binary-forking model
without locks and atomic instructions [24, 19, 13, 14, 4, 15, 7, 5, 40, 11, 12, 10, 30, 20, 42, 41, 26, 36],
developing algorithms with optimal/near-optimal span and work for several fundamental problems
in the binary-forking model without locks and atomic instructions remain open.

Algorithms for the binary-forking model without atomics face two major challenges: 1) how to
avoid the blow-up in span (synchronization cost) without blowing up work? 2) how to avoid the use
of atomic operations without asymptotically increasing span and work? Surprisingly, it turns out
that using extra space, we can tackle both challenges. By extra space, we mean the space allocated
from RAM (from heap memory), not from processors registers or stack memory.

Our Contributions. In this paper, we present results for three fundamental problems in the
binary-forking model without atomics. Our major results include: (1) an optimal O(log n) span
algorithm for Strassen’s Matrix Multiplication (MM) with only a ⇥ (log log n)-factor blow-up in
work as well as a near-optimal O(log n log log n) span algorithm with no asymptotic blow-up in work;
(2) a randomized comparison-based sorting algorithm with optimal O(log n) span and O(n log n)
work, both with w.h.p. in n; and (3) a near-optimal O(log n log log log n) span algorithm for FFT
with less than a log n-factor blow-up in work for all practical values of n (i.e., n 1010,000).

Though space played a major role in the design of all our algorithms in this paper, our algorithms
for Strassen’s matrix multiplication and FFT do not use asymptotically more space than their
standard PRAM counterparts. We present a space-adaptive algorithm for Strassen’s MM which
always achieves a span within ⇥ (log n) factor of optimal for any given amount of space.

We list our major results in Table 1.

Major Techniques. The extra log n factor in the span of the standard parallelization of Strassen’s
MM algorithm in the binary-forking model arises from the fact that it spends ⇥

�
log n

2i

�
time (syn-

chronization cost) computing intermediate results at recursion level i for each i 2 [0, log2 n] which
requires only O (1) time in the PRAM model. We observe that none of those intermediate matrices
need to be explicitly computed or stored to compute the final output. Indeed, each cell in the final
output matrix can be computed directly in O (log n) time from the two original input matrices of
the algorithm. This single-point computation method can be used to compute all the cells in
the output matrix simultaneously in ⇥ (log n) span. However, this approach blows up the work
performed by the algorithm by up to a ⇥

�
n2

�
factor because the approach does not reuse interme-

diate results. We avoid this work blow-up by computing and temporarily storing the intermediate
results at ⇥ (log log n) carefully ‘chosen levels’ of recursion, which eliminates the need for implicitly
recomputing the intermediate results over and over again. So, all single-point computations pro-
ceed in stages where a stage includes all levels of recursion between two consecutive ‘chosen levels,’

3

and synchronizations happen only at stage boundaries with all threads executing asynchronously
within every stage. We show that this stage-based approach reduces the work blow-up from
⇥
�
n2

�
factor to only ⇥ (log log n) factor while achieving the optimal ⇥ (log2 n) span. A similar

approach works for FFT.
The technique described above works for all Strassen-like algorithms, including Victor Pan’s

O
�
n2.795

�
work algorithm [33]. We remark that while we use additional techniques specific to the

problems to achieve better work and span bounds, the main contribution is devising the general
technique to enable limited work-sharing among the single-point computations using extra space.

Using extra space helps to avoid atomic TS operations, too. Blelloch et al. [6] achieve optimal
span (with high probability) and optimal work (in expectation) for sorting, semisorting, and random
permutation using TS. They use TS to distribute a set of n items into m = o(n) buckets where
each item knows its destination bucket, but how many items will fall in a bucket is unknown. They
reduce the problem to a variant of a balls and bins problem. In particular, when n items try to
find unoccupied cells randomly among c · n cells (c is a constant) in parallel, it is enough for each
item to try ⇥ (log n) times to find an unoccupied cell with high probability; the span of this process
is thus ⇥ (log n). An item tries to put itself in a random cell using a TS on a flag to reserve it.
If the TS fails, it tries again since the cell is already taken. In the absence of TS, it would take
⇥ (log n) synchronization time to figure out the items that fail to find a cell after each attempt,
thus making the overall span ⇥

�
log2 n

�
for the ⇥ (log n) attempts. Our approach can avoid this

log n synchronization steps by increasing the space by a factor of log n and by allowing each item
to simultaneously attempt to place itself in log n random cells. We assume arbitrary concurrent
writes meaning that if multiple concurrent threads try to write to any given shared memory location
simultaneously only one arbitrary thread succeeds. This approach does not increase span and work.

While Blelloch et al.’s [6] sorting algorithm performs ⇥ (n log n) work in expectation, we achieve
the same bound w.h.p. in n. The success probability of the distribution step in a recursive call
of Blelloch et al.’s algorithm is dependent on the size of the input to that recursive call. Since
input size decreases doubly exponentially with the increase of recursion level, though the success
probability is high in the corresponding input size, it reduces rapidly as execution moves deeper in
the recursion tree and does not remain high w.r.t. the original input size n0.

To achieve a ⇥ (n log n) work bound w.h.p. in n (along with a ⇥ (log n) span also w.h.p. in n)
our Full-Sort algorithm proceeds in two phases — a recursive Almost-Sort phase and a non-
recursive leftover integration phase. Extra space is used throughout Full-Sort to simulate TS
operations as described in the previous paragraph. Given an input of size n0, Almost-Sort sorts
n0�o(n0) items of the input, then the remaining o(n0) items are merged with the sorted n0�o(n0)
items in the integration step. Almost-Sort is a recursive bucketing algorithm with some similarity
to Blelloch et al.’s algorithm. However, the bucket size in each of its recursive calls is an r(n0)

factor larger than the ones used in Blelloch et .al.’s paper, where r(n0) = ⇥
⇣
logn0 log log logn0

log logn0

⌘
, and

recursion in Almost-Sort is terminated much sooner than in Blelloch et .al.’s algorithm, so that
throughout Almost-Sort partitioning succeeds w.h.p. in n0. Each item tries to put itself into
its destination bucket twice and fails with probability 1/(r(n0))2. We set aside the failed items to
be incorporated into the final sorted sequence during the integration step later and move to the
next level of recursion without them. By allowing some items to remain unsorted, we make the
work done by each recursive step e↵ectively independent of the probability that single items are
successfully written to their chosen location. We show that with high probability in n0, at most
⇥
�
n0/(r(n0))2

�
items fail to move from any level of recursion to the next level. By switching to

Cole-Ramachandran’s deterministic sorting algorithm [17] after log log log n0 levels of recursion, we
ensure that Almost-Sort performs O(n0 log n0) work w.h.p. in n0. The integration phase then

4

Algorithm Work (T1) Space (S!) Span (T!) Result

Strassen’s Matrix Multiplication

Strassen’s MM [35, 19] O (nw) ⇥ (nw) O
�
log2 n

�

! Strassen-S O (nw log log n) ⇥ (nw) O (log n) Th. 2.4

! Strassen-W O (nw) ⇥ (nw/ log log n) O (log n log log log n) Th. 2.7

! Strassen-S-Adaptive O (nw log log n) ⇥ (s) O ((nw/s) log n) Th. 2.5

! Strassen-W-Adaptive O (nw) ⇥ (s) O
�
(nw/s) log2 n

�
Th. 2.6

Sorting

Cole-Ramachandran [17] O (n log n) ⇥ (n) O (log n log log n)

Blelloch et al. (atomic) [6] O (n log n) exp. ⇥ (n) O (log n) whp

! Full-Sort O (n log n) whp ⇥
⇣
n logn log log logn

log logn

⌘
O (log n) whp Th. 3.6

! Sort-Adaptive O (n log n) whp ⇥ (s) O
�
(n/s) log2 n

�
whp Th. 3.7

Fast Fourier Transform

Cooley-Tukey
p
n-way [18] O (n log n) ⇥ (n) O (log n log log n)

! FFT O

⇣
n logg(n) n

⌘
⇥ (n) O (log n log log log n) Cor. 4.3.1

Table 1: The complexity analyses of our new algorithms (marked with !) in the binary-forking model

without atomics. Here, n = problem size, s = space 2 [input size,work], w = log2 7, exp. = expected time,

whp = with high probability in n, g(n) < 2 for n < 1010,000.

combines the O
�
n0 log log log n0/(r(n0))2

�
(w.h.p. in n0) leftover items with the already sorted

sequence in O(n0 log n0) work w.h.p. in n0.

Binary-Forking Model. Binary-forking model captures the current multi-core shared-memory
systems. Many parallel algorithms are based on binary-forking model [1, 3, 4, 5, 20]. Computations
in the binary-forking model can be viewed as a series-parallel DAG where each node represents a
thread’s instruction. The root of the tree is the first instruction of the starting thread. Each node
has at most two children. If node u denotes the i-th instruction of thread t and u has only one
child v, then v denotes the (i + 1)-th instruction of thread t. If node u has two children v and
w, then v represents the (i+ 1)-th instruction of thread t and w represents the first instruction of
the new forked thread t

!
. The binary-forking model includes “join” instructions to join the forking

threads. They are modeled as a node with two incoming edges. The work of the computation is
the number of nodes in the series-parallel DAG and the span of the computation is the length of
the longest path in the DAG assuming unbounded resources such as processors and space.

Performance Metrics of a Parallel Program. We use the work-span model [19] to analyze
the performance of parallel programs executed on shared-memory multicore machines. The work
of a multithreaded program, denoted by T1(n), where n is the input parameter, is defined as the
total number of CPU operations it performs when executed on a single processor. The span T! (n)
of a program which is also known as its critical-path length or depth, is the maximum number of
operations performed on any single processor when the program is run on an unbounded number
of processors. The parallel running time Tp(n) of a program when run on p processors under a
greedy scheduler is given by Tp(n) = O (T1(n)/p+ T! (n)). The parallelism, computed by the ratio
of T1(n) and T! (n), is the average amount of work performed by the program in each step of its
critical path.

5

2 Strassen’s Matrix Multiplication

Suppose w = log2 7. Strassen’s matrix multiplication (MM) algorithm [35] performs O (nw) work
(i.e., multiplications and additions), unlike the classic MM algorithm that performs O

�
n3

�
work.

A straightforward parallelization of Strassen’s MM leads to ⇥
�
log2 n

�
span. Our goal is to design

a parallel Strassen’s MM in the binary-forking model without using locks and atomic instructions
to achieve an optimal span of O (log n) without a↵ecting the work bound of ⇥ (nw).

In this paper, we present parallel Strassen MM algorithms (i) having optimal O (log n) span
and O (nw log log n) work, i.e., work very close to that of the standard Strassen’s MM; and (ii)
having O (nw) work and O (log n log log log n) span, i.e., very close to optimal span.

The core ideas and techniques used in our algorithms are as follows. We first perform single-
point computation , i.e., computation of a single cell of the output matrix independently from that
of other cells/entries. This implies that all cells of the output matrix are computed independently
in O (log n) span. However, as there is no work-sharing across multiple threads, the total work
blows up to O

�
nw+2

�
. We enable partial work-sharing across threads by saving intermediate

computations at carefully selected levels of recursion. By splitting the recursion tree into stages
and allowing work-sharing across stages, we are able to reduce the work to very close to O (nw).
Hence, by using single-point computations in stages, we are able to obtain good work and span
bounds. We use this algorithm to design other parallel Strassen’s MM algorithms with di↵erent
advantages.

k-way Strassen’s MM [35, 19]. The k-way Strassen’s MM, for k 2 [1, 7], executes the child
nodes in exactly d7/ke parallel steps without executing more than k child nodes at a time.

Lemma 2.1 ([35, 19]). The k-way Strassen’s MM has a complexity of O (nw) work, O
�
log2 n

�

span if k = 7, O
�
nlog2"7/k#

�
span if k 6= 7, O

�
n2 log n

�
space if k = 4, and O

�
nmax (2,log2 k)

�
space

if k 6= 4.

Proof. The work, span, and extra space recurrences for the k-way Strassen’s MM are as follows. If
n = 1, then T1(n) = O (1) and T! (n) = O (1). If n > 1, then

T1(n) = 7T1(n/2) +O
�
n2

�
, T! (n) = d7/keT! (n/2) +O (log n) , S! (n) = kS! (n/2) +O

�
n2

�
.

Solving these recurrences, we have the lemma.

The work of the k-way Strassen’s MM for any value of k is O
�
nlog2 7

�
. The k-way algorithm

gives a trade-o↵ between span and space. When k = 1, we get the standard Strassen’s algorithm
[35]. When k = 7, we get the standard parallel Strassen’s MM [19] that spawns all the child nodes
in parallel achieving O(log2 n) span and occupying O

�
nlog2 7

�
space.

Strassen-S MM. In this section, we present a parallel Strassen’s MM algorithm, as shown in
Figure 1, that achieves the optimal span of O (log n) with only a O (log log n) factor increase in
the work compared with the classical sequential Strassen’s MM algorithm. In this algorithm, we
multiply two matrices U and V and store the matrix product in X. We first construct the required
data structures as shown in Figure 2. We then compute the input matrices (U and V) at all nodes
in the recursion tree in parallel in O (log n) span. Finally, we compute the output matrix (X) at
all nodes in the recursion tree in O (log n) span.

[Step 1. Compute the Input Matrices.] Consider the standard 7-way parallel Strassen’s
MM. The height of the recursion tree is O (log n) and in each level, the total cost of forking

6

Strassen-S (X,U, V) ! X U ⇥ V

1. (U, V ,X, Uquad, V quad, Xbranch) Construct-Data-Structures (U, V)

2. Compute-Input-Matrices (U, 0, 0, Uquad); Compute-Input-Matrices (V , 0, 0, V quad)

3. Compute-Output-Matrices (X, 0, 0, Xbranch)

4. X X[0][0]

Compute-Input-Matrices (Z, stage id, root id, quad)

1. height #levels in the stage; #leaves 7height

2. parallel for node 0 to #leaves �1 do

3. leaf id (root id �1) ⇥ #leaves + node

4. parallel for i 0 to n� 1 do

5. parallel for j 0 to n� 1 do

6. Z[stage id][leaf id][i, j] Compute-Input-Cell (Z, stage id, leaf id, i, j, n, height, quad)

7. if not last stage then Compute-Input-Matrices (Z, stage id + 1, leaf id, quad)

Compute-Input-Cell (Z, stage id, node id, i, j, n, height, quad)

1. if height = 0 then return Z[stage id][node id][i, j]

2. parent id (node id / 7), branch id node id mod 7

3. parallel for k 0 to 1 do

4. t[k] 0; coe↵ quad[branch id][k].coe↵

5. if coe↵ 6= 0 then

6. new i n⇥ quad[branch id][k].shift i+ i; new j n⇥ quad[branch id][k].shift j + j

7. t[k] coe↵ ⇥ Compute-Input-Cell (Z, stage id, parent id, new i, new j, 2n, height �1, quad)

8. return t[0] + t[1]

Compute-Output-Matrices (Z, stage id, root id, branch)

1. height #levels in the stage; #leaves 7height

2. parallel for node 0 to #leaves �1 do

3. leaf id (root id �1) ⇥ #leaves + node

4. if last stage then Z[stage id][leaf id][0,0] U [stage id][leaf id][0,0] ⇥ V [stage id][leaf id][0,0]

5. else Compute-Output-Matrices (Z, stage id + 1, leaf id, branch)

6. parallel for i 0 to n� 1 do

7. parallel for j 0 to n� 1 do

8. Compute-Output-Cell (Z, stage id, root id, i, j, n, height, branch)

Compute-Output-Cell (Z, stage id, node id, i, j, n, height, branch)

1. if height = 0 then return Z[stage id + 1][node id][i, j]

2. shift i [i > n/2]; shift j [j > n/2] ! [] is the Iversion bracket

3. quad id 2 shift i+ shift j; new i i� (n/2) shift i; new j j � (n/2) shift j

4. parallel for k 0 to 6 do

5. t[k] 0; coe↵ branch[quad id][k]

6. if coe↵ 6= 0 then

7. child id (node id �1) ⇥7 + k

8. t[k] coe↵ ⇥ Compute-Output-Cell (Z, stage id, child id, new i, new j, n/2, height �1,
branch)

9. return
P6

k=0 t[k]

Figure 1: The Strassen-S MM algorithm.

7

k = 0 k = 1

b
ra
n
ch

id

$ sh
if
t
i

, sh
if
t
j

, co
e↵

% $ sh
if
t
i

, sh
if
t
j

, co
e↵

%
0 $0, 0, 1% $1, 1, 1%
1 $1, 0, 1% $1, 1, 1%
2 $0, 0, 1% $&,& , 0%
3 $1, 1, 1% $&,& , 0%
4 $0, 0, 1% $0, 1, 1%
5 $1, 0, 1% $0, 0,& 1%
6 $0, 1, 1% $1, 1,& 1%

k = 0 k = 1

b
ra
n
ch

id

$ sh
if
t
i

, sh
if
t
j

, co
e↵

% $ sh
if
t
i

, sh
if
t
j

, co
e↵

%
0 $0, 0, 1% $1, 1, 1%
1 $0, 0, 1% $&,& , 0%
2 $0, 1, 1% $1, 1,& 1%
3 $1, 0, 1% $0, 0,& 1%
4 $1, 1, 1% $&,& , 0%
5 $0, 0, 1% $0, 1, 1%
6 $1, 0, 1% $1, 1, 1%

k

q
u
ad

id

0 1 2 3 4 5 6

0 1 0 0 1 & 1 0 1
1 0 0 1 0 1 0 0
2 0 1 0 1 0 0 0
3 1 & 1 1 0 0 1 0

Figure 2: Data structures required for the Strassen-S MM algorithm. Left: Uquad and V quad.
Right: Xbranch.

and synchronizing threads to compute the input matrices is O (log n). Hence, the total span for
computing input matrices at all nodes in the recursion tree is O

�
log2 n

�
. We can reduce the span

to O (log n) using single-point computation.
A cell of an input matrix (U or V) at a node of the recursion depends on at most two cells of

the corresponding input matrix at its parent node. This implies that each cell in an input matrix
at a leaf node depends on at most 2logn = n cells in the corresponding input matrix at the root
node. If we were to compute all input cells of all input matrices at all nodes, the total work would
explode to O (nw

⇥ n) = O
�
nw+1

�
. To keep the work very close to O (nw), we split the entire

recursion tree into stages. We then use single-point computation of input cells in stages.
For this algorithm, we have O (log log n) stages so that the work performed in each stage is

O (nw). Using single-point computation in each stage, we are able to achieve the desired optimal
span of O (log n) limiting the total work to O (nw log log n).

In this step, we compute the input matrices of all nodes in the recursion tree. The step consists
of h+ 1 sequential stages: 0, 1, . . . , h, as shown in Figure 3, such that the height of stage i is fixed
at ci log n, where h and ci are given below:

ci =

8
><

>:

0 if i = �1,

1� ↵i+1 if i 2 [0, h� 1],

1 if i = h.

such that w = log2 7,↵ =
1

w � 1
, and h = logw& 1

log n

log log log n
.

(1)

Please refer to Figure 1 (the Compute-Input-Matrices algorithm) for computing the input
matrices (U and V) for all the leaf nodes in all stages. We start from stage 0. For any given
stage, denoted by stage id, we can easily compute the topmost level, called the root level and the
bottommost level, called the leaf level. It is also easy to list out all indices of the leaf nodes in a
given stage. So, for all leaf nodes, for all cells in the input matrix in a particular leaf node, we
invoke the function Compute-Input-Cell . This function computes the value of a specific cell in
the input matrix of a leaf node.

The working of the Compute-Input-Cell algorithm is as shown in Figure 4 (left). The figure
shows the way in which a highlighted cell in the U matrix at a leaf node with id 05 (in base-7
system, for simplicity) is computed. As the last digit of the index is 5, it means that the leaf node
is the 5th child of its parent. From the logic of the Strassen’s MM algorithm, we know that the U
matrix in the 5th child node of a parent node is computed by subtracting the first quadrant (�11)
from the third quadrant (+21) of the U matrix of the parent node. Hence, we can exactly know
the two cells in the U matrix of the parent node on which the highlighted cell in the U matrix of

8

Stage 0

Stage 1

Stage 2

Work = O(nw)
Height = c0 logn

Work = O(nw)
Height = (c1 ! c0) log n

Work = O(nw)
Height = (c2 ! c1) log n

Span = O(log n)
Space = O(nw)

Work = O(nw log logn)

Figure 3: Stages in the Strassen-S MM algorithm for computing the input matrices.

+

!

+

+

+

+

Digit Quadrants
0 { +11, +22}
1 { +21, +22}
2 { +11}
3 { +22}
4 { +11, +12}
5 { +21, ! 11}
6 { +12, ! 22}

root node

leaf node (index = 05)

Quadrant Child nodes
11 { +0 , +3 , ! 4, +6 }
12 { +2 , +4 }
21 { +1 , +3 }
22 { +0 , ! 1, +2 , +5 }

root node

leaf nodes

+ + +!

+ ! ++

0 3 4 6

0 1 2 5

Figure 4: Left: Single-point computation of a cell in the input matrix U at a leaf node in a stage. Right:
Single-point computation of a cell in the output matrix X at a root node in a stage. (If there is an arrow
from cell a to cell b, it means that cell a depends on cell b.)

the leaf node depends. Also, we can compute the highlighted cell in O (1) time using the two cells
of the parent node. The first digit of the index of the lead node is 0. This means that the parent
node of the leaf node is the 0th child of its parent (i.e., the leaf node’s grandparent). From the
logic of the Strassen’s MM algorithm, we know that the U matrix in the 0th child node of a parent
node is computed by adding the first quadrant (+11) to the fourth quadrant (+22) of the U matrix
of the parent node. Using this approach, we can trace the path from the leaf node to its ancestor
at the root level. So, each cell in the leaf node depends on 2 cells in its parent node which in turn
depends on 4 cells in its parent node and so on until we reach a node at the root level. In this way,
we can spawn multiple threads that recursively compute each cell at the leaf node using cells from
its ancestor at the root level of the stage. The span for computing each cell is simply the height of
the stage i.e, the number of levels in that stage.

Once all the cells in a leaf node with id 05 are computed, the algorithm recursively and asyn-
chronously invokes Compute-Input-Matrices for the next stage with this leaf node as the new
root. The base case of the Compute-Input-Matrices algorithm is when the algorithm reaches
the last stage at which we compute the cells at the leaf nodes using the exact same idea.

Lemma 2.2. Compute-Input-Matrices has a complexity of O (nw log log n) work, O (log n)
span, and O (nw) space.

Proof. [Work.] We compute the input matrices in h+ 1 stages S0, S1, . . . , Sh, where
h = logw& 1(log n/ log log log n). Suppose Wi define the work done at stage Si. We first come up

9

with a generic formula for Wi. We use a direct proof to show that Wi = O (nw), which implies that
the total work is

Ph
i=0Wi = O (nw log log n).

We compute Wi for i 2 [0, h � 1]. #Nodes at the leaf level of stage Si is 7ci logn = nwci . The
#cells in a matrix at the leaf level is (n/2ci logn)2 = n2(1& ci). Each cell in a matrix at the leaf level
depends on O(2(ci& ci" 1) logn) = O (nci& ci" 1) cells in a matrix at the root level of the stage. Hence,
Wi = O

�
nwcin2(1& ci)nci& ci" 1

�
=O

�
nci(w& 1)& ci" 1+2

�
. To show thatWi = O (nw) for all i 2 [0, h�1],

it is enough to prove that ci(w � 1) � ci& 1 + 2 = w. We substitute the values of ci and ci& 1 from
equation 1 to get: ci(w� 1)� ci& 1 + 2 = (1� (1/(w� 1))i+1)(w� 1)� (1� (1/(w� 1))i) + 2 = w.

We now compute Wh. The height of the first h stages is ch& 1 log n. So, the height of the last
stage Sh is log n � ch& 1 log n. Substituting the value of ch& 1 from equation 1 and simplifying, we
get the height of stage Sh as log log log n. There are nw nodes at Sh. The size of a matrix at a leaf
node is 1⇥ 1. Each cell depends on 2log log logn = log log n cells in a matrix at the root level of stage
Sh. Hence, work done at the last stage is Wh = O (nw log log n).

Combining the work of the first h stages and the last stage, we get T1(n) =
Ph& 1

i=0 Wi +Wh =
O (nw log log n).

[Span.] Let T! (m, i) denote the span of the Compute-Input-Matrices algorithm starting from
stage i where a matrix at the root level is of size m⇥m. We give a recursive formula to compute
T! (m, i). Then, the total span for the algorithm is T! (n, 0).

Consider the Compute-Input-Matrices algorithm. Let �ci = ci � ci& 1. #Nodes at the
leaf level of stage Si is 7�ci logn. Launching these nodes in parallel (line 2) incurs a span of
O (�ciw log n). A matrix at the leaf level will be of size m/(2�ci logn) ⇥m/(2�ci logn). Spawning
Compute-Input-Cell function for all cells (lines 4, 5) incur a span of O (2 logm� 2�ci log n).
Executing the Compute-Input-Cell algorithm incurs O (�ci log n) span. Adding all these spans
give us O (�ci log n+ logm).

The span of stage Si recursively depends upon the span of stage Si+1 as the matrices at the
leaf level of stage Si+1 are constructed from the leaf level matrices of stage Si. Hence, T! (m, i)
can be recursively defined using the previous analysis as: T! (m, i) = O (log log log n) if i = h and
T! (m, i) = O (�ci log n+ logm) + T! (m1&�ci , i + 1) if i < h. Substituting the values of ci from
equation 1, we get �ci = 1 � ↵i+1

� (1 � ↵i) = ↵i(1 � ↵) = O
�
↵i
�
. We know that m starts with

n and decreases by a factor of n�ci for every stage. Hence, m = n1& ci" 1 = n↵
i
, which implies that

logm = ↵i log n.
By unrolling the recursion and using the fact that ↵i is a geometric series and ↵ < 1, we compute

the total span as T! (n, 0) =
Ph& 1

i=0 ↵
i log n+ T! (n, h) = O (log n).

[Space.] The total space is dominated by the space used by the data structures. There are nw

matrices at the leaf level for each of the input matrices U and V . Each such matrix is of size 1⇥ 1.
Hence, space usage is O (nw).

[Step 2. Compute the Output Matrices.] The logic used to compute the output matrices is
very similar to that used to compute the input matrices. A cell of the output matrix (X) at a node of
the recursion depends on at most four cells of the corresponding output matrices at its child nodes.
This implies that each cell in the output matrix at the root node depends on at most 4logn = n2

cells in the corresponding output matrices at the leaf nodes. If we were to compute all output cells
of all output matrices at all nodes, the total work would explode to O

�
nw
⇥ n2

�
= O

�
nw+2

�
. To

keep the work very close to O (nw), we split the entire recursion tree into stages. We then use
single-point computation of output cells in stages.

In this step, we compute the output matrix of all nodes in the recursion tree. The phase consists
of h + 1 sequential stages: 0, 1, . . . , h, as shown in Figure 3 (replace ci’s with di’s), such that the

10

height of stage i is fixed at di log n, where h and di are given below:

di =

8
><

>:

0 if i = �1,

1� �i+1 if i 2 [0, h� 1],

1 if i = h.

such that w = log2 7,� =
4� w

2
, and h = log 2

4" w

2 log n

log log log n
� 1.

(2)

In step 1, we computed the input matrices in the top-down fashion. In contrast, in this step, we
construct the output matrices at di↵erent recursion levels in a bottom-up fashion. In other words,
we compute the last stage Sh first, then stage Sh& 1, and so on until stage S0. At stage S0, the final
output matrix X will be of size n⇥ n.

Please refer to Figure (the Compute-Output-Matrices algorithm) for computing the output
matrix for all leaf nodes in all stages. We first descend the tree until we reach the last stage Sh. We
know that all cells in the leaf nodes of this stage (or the recursion tree) already store the input U
and V matrices using which we can compute the output matrices at that level. Using these output
matrices at the leaf level of Sh, we compute the output matrices at the root level of Sh (or the leaf
level of Sh& 1). Using these matrices at the leaf level of Sh& 1, we compute the output matrices at
the root level of Sh& 1. This process continues until we reach the root level of S0 (or the root node
of the entire recursion tree), which is the desired matrix product.

The way an output matrix at the root level is computed from the output matrices at the leaf
level of stage Si is as follows. For all cells in the output matrix at the root level, we invoke the
function Compute-Output-Cell . This function computes the final value at that cell.

The working of the Compute-Output-Cell algorithm is shown in Figure 4 (right). The
figure shows the way in which a highlighted cell in the output matrix at the root level is computed.
The highlighted cell belongs to the first quadrant (11) of the output matrix. From the logic of
the Strassen’s MM algorithm, we know that the first quadrant of the output matrix of a node is
computed by adding the output matrices of the 0th, 3rd, and 6th child nodes and subtracting that
of the 4th child node. We can compute the highlighted cell from four cells in the next level in O (1)
time. Now, consider the output cell in the 3rd child node of the root node. This cell belongs to
the third quadrant (22) of that matrix. Again, from the logic of the Strassen’s MM algorithm, the
fourth quadrant of the matrix is computed by adding the output matrices of the 0th, 2nd, and 5th
child nodes and subtracting that of the 1st child node. We continue the process until we reach the
leaf level of that stage.

Once cells in the output matrices at the root level of a stage Si are computed, the algorithm
will proceed to computing the cells in the output matrices at the root level of stage Si& 1 recursively
until we reach the root node of the entire recursion tree.

Lemma 2.3. Compute-Output-Matrices has a complexity of O (nw log log n) work, O (log n)
span, and O (nw) space.

Proof. [Work.] We compute the output matrix in h+ 1 stages S0, S1, . . . , Sh, where
h = logw& 1(log n/ log log log n). Suppose Wi defines the work done at stage Si. We first come up
with a generic formula for Wi. We use a direct proof to show that Wi = O (nw), which implies that
the total work is

Ph
i=0Wi = O (nw log log n).

We compute Wi for i 2 [0, h�1]. Each output matrix at the root level of stage Si is constructed
from the output matrices at the leaf level of the stage. All cells in all output matrices at the root
level of stage Si are computed in parallel. #Nodes at the root level of stage Si is 7di" 1 logn = nwdi" 1 .
Each such matrix has (n1&di" 1)2 = n2(1&di" 1) cells. Each cell at a recursion level ` depends on at
most 4 output cells in recursion level `+ 1. Hence, each cell in a matrix at the root level of stage

11

Si depends on O(4(di&di" 1) logn) = O
�
n2(di&di" 1)

�
cells in a matrix at the leaf level of the stage.

Hence, Wi = O
�
nwdi" 1n2(1&di" 1)n2(di&di" 1)

�
= O

�
n2di+(w& 4)di" 1+2

�
.

To show thatWi = O (nw) for all i 2 [0, h�1], it is enough to prove that 2di+(w�4)di& 1+2 = w.
We substitute the values of di and di& 1 from equation 2 and simplify to get: 2di+(w�4)di& 1+2 = w.

We now compute Wh. We see that Wh = O(n2dh+(w& 4)dh" 1+2) using the equation aforemen-
tioned. We substitute the values of dh, dh& 1, h, and � from equation 2 and simplify to obtain
Wh = O(nw

· n(4&w)(1&dh" 1)) = O(nw
· n2�h+1

) = O (nw log log n).
Combining the work of the first h stages and the last stage, we get T1(n) =

Ph& 1
i=0 Wi +Wh =

O (nw log log n).

[Span.] Let T! (m, i) denote the span of the Compute-Output-Matrices algorithm starting
from stage i where a matrix at the leaf level is of size m ⇥ m. We give a recursive formula to
compute T! (m, i). Then, the total span for the algorithm is T! (n, 0).

Consider the Compute-Output-Matrices algorithm. Let �di = di+1 � di. #Nodes at
the leaf level of stage Si is 7�di logn. Launching these nodes in parallel (line 2) incurs a span of
O (�diw log n). A matrix at the leaf level will be of size m/(2�di logn) ⇥m/(2�di logn). Spawning
Compute-Output-Cell function for all cells (lines 6, 7) incur a span of O (2 logm� 2�di log n).
Executing the Compute-Output-Cell algorithm incurs O (�di log n) span. Adding all these
spans give us O (�di log n+ logm).

The span of stage Si recursively depends upon the span of stage Si+1 as the output matrices at
the leaf level of stage Si+1 are constructed from the leaf level matrices of stage Si. Hence, T! (m, i)
can be recursively defined using the previous analysis as: T! (m, i) = O (log log log n) if i = h and
T! (m, i) = O (�di log n+ logm) + T! (m1&�di , i + 1) if i < h. Substituting the values of di from
equation 2, we get �di = 1 � �i+2

� (1 � �i+1) = �i+1(1 � �) = O
�
�i
�
. We know that m starts

with n and decreases by a factor of n�di for every stage. Hence, m = n1&di" 1 = n�
i
, which implies

that logm = �i log n.
By unrolling the recursion and using the fact that �i is a geometric series and � < 1, we com-

pute the total span as T! (n, 0) =
Ph& 1

i=0 �
i log n+ T! (n, h) = O (log n).

[Space.] Using a similar analysis as given in Lemma 2.3, space usage is O (nw).

Theorem 2.4. The Strassen-S MM algorithm has a complexity of O (nw log log n) work, O (log n)
span, and O (nw) space.

Proof. The theorem follows from lemmas 2.2 and 2.3.

Strassen-S-Adaptive MM. We design a parallel Strassen’s MM algorithm Strassen-S-Adaptive
with space-span trade-o↵, which for any given s amount of space in the range [n2, nw], achieves
the optimal span for that space and performing work very close to O (nw). Suppose we are given
the input matrices U and V . We need to compute the output matrix X using space s 2 [n2, nw].
Then, the algorithm works as follows. Observe that there are log n levels in the recursion tree of
the Strassen’s MM algorithm. We split the entire recursion tree, at level t, into two parts: the top
part and the bottom part. The threshold level t depends on the value s. We execute the classical
sequential Strassen’s MM algorithm in the top portion of the recursion tree and the Strassen-S
algorithm in the bottom portion of the tree.

Theorem 2.5. The Strassen-S-Adaptive MM algorithm has a complexity of O (nw log log n)
work and O ((nw/s) log n) span, given ⇥ (s) amount of space.

12

Proof. Let T1(n, s), T! (n, s), and S! (n, s) denote work, span, and space of Strassen-S-Tunable .
Let T1(n), T! (n), and S! (n) denote work, span, and space of Strassen-S . Note that Strassen-S
does not have a space parameter.

We run the sequential Strassen’s MM algorithm for the first t levels of the recursion tree. At
level t, the size of the matrices is n/2t ⇥ n/2t and the number of matrices is 7t. We have

T1(n, s) = 7T1(n/2, s) +O
�
n2

�
= · · · = 7tT1(n/2

t) +O
�
7tn2

�

T! (n, s) = 7T! (n/2, s) +O (log n) = · · · = 7tT! (n/2t) +O
�
7t log n

�

S! (n, s) = S! (n/2, s) +O
�
n2

�
= · · · = S! (n/2t) +O

�
n2

�
= O

�
(n/2t)w + n2

�

Equating the total space usage with s, we get s = ⇥
�
(n/2t)w + n2

�
. We simplify this expression

to get the two expressions n/2t = ⇥
�
(s� n2)(1/w)

�
and 7t = ⇥

�
nw/(s� n2)

�
. Substituting the

two expressions in the span and work equations, we have

T! (n/2t) = O
�
log2(n/2t)

�
= O

�
log2 s

�
= O (log n)

T! (n, s) = 7tT! (n/2t) +O
�
7t log n

�
= O ((nw/s) log n)

T1(n/2
t) = (n/2t)w log log(n/2t)

T1(n, s) = 7t · T1(n/2
t) +O

�
7tn2

�
= O (nw log log n)

Strassen-W-Adaptive MM. We can show that by using the sequential 1-way Strassen’s MM
until recursion level t (depends on s units of space) and then switching to the 7-way Strassen’s MM
instead of Strassen-S , we can achieve work bound the same as that of the classical Strassen’s
MM, but the span increases by an extra O (log n) factor.

Theorem 2.6. The Strassen-W-Adaptive MM algorithm has a complexity of O (nw) work and
O
�
(nw/s) log2 n

�
span, given ⇥ (s) amount of space.

Proof. The proof is similar to that of Theorem 2.5 except that T! (n/2t) = O
�
log2 n

�
and T1(n/2t) =

(n/2t)w.

Corollary 2.6.1. With s = ⇥
�
n2

�
units of space, (i) Strassen-S-Adaptive has a complexity of

O (nw log log n) work and O
�
nw& 2 log n

�
span and (ii) Strassen-W-Adaptive has a complexity

of O (nw) work and O
�
nw& 2 log2 n

�
span.

Strassen-W MM. We ask the following question. If the work is bounded by O (nw), what is the
best span achievable by a parallel Strassen’s MM algorithm? It turns out that with O (nw) work
bound one can achieve O (log n log log log n) span.

We split the entire recursion tree, at level log(n/(log log n)1/(w& 2)), into two parts: the top
and the bottom parts. We execute the Strassen-S in the top portion and the quadratic space
Strassen-W-Adaptive algorithm in the bottom portion.

Theorem 2.7. The Strassen-W MM algorithm has a complexity of O (nw) work, O (log n · log log log n)
span, and O (nw/ log log n) space.

Proof. There aremmatrices of size (n/m)⇥(n/m) at the switching level t, wherem = n/(log log n)1/(w& 2)).
At each node at the threshold level, we add two matrices with two for loops. Adding two matrices
has O (log(n/m)) span and O

�
(n/m)2

�
work. From Theorem 2.4, the span and work for Strassen-

S are O (logm · log(n/m)) and O
�
(mw log logm) · (n/m)2

�
respectively. The span and work for

13

Strassen-W-Tunable in mw leaves are O
�
(n/m)(w& 2) log2(n/m)

�
and O (mw(n/m)w) respec-

tively. Combining the span from Strassen-S and Strassen-W-Tunable , we get the expression
for span for the hybrid algorithm as follows.

When m = n/(log log n)1/(w& 2), then n/m = (log log n)1/(w& 2). We compute span as

T! (n) = O
�
logm · log(n/m) + (n/m)w& 2 log2(n/m)

�

= O
�
((log n� (1/(w � 2)) log log log n)(1/(w � 2)) log log log n) + ((1/(w � 2)) log log log n)2 log log n

�

= O (log n · log log log n) .

Combining work from both Strassen-S and Strassen-W-Tunable , we get the total work as:

T1(n) = O
�
(mw log logm)(n/m)2 +mw(n/m)w

�

= O

⇣
(nw/(log log n)

w
w" 2)(log log n)

2
w" 2 + nw

⌘
= O (nw) .

We use s = ⇥ (nw/ log log n) space for the whole algorithm.

S! (n) = O
�
mw(n/m)2

�
= O

⇣
(nw/(log log n)

w
w" 2)(log log n)

2
w" 2

⌘
= O (nw/ log log n) .

Strassen-like MM Algorithms. Let recursive algorithm ALG multiply two input matrices U
and V of size n⇥ n and produce output matrix X, that is X = U · V . ALG divides U into m⇥m
blocks each of size (n/m) ⇥ (n/m). Similarly, ALG divides the other input matrix V and output
matrix X. Suppose that algorithm ALG has R recursive calls in each level of recursion. Then ALG
creates R temporary matrices each for both input matrices and the output matrix. In particular,
the computation of ALG in each level of recursion is as follows. For each r = 0, 1, . . . , R� 1, Here
A(r), B(r) and C(r) represent temporary matrices.

A(r)
 � 0;B(r) � 0

A(r)
 � A(r) + ↵(r)

i,kUi,k for i, k = 0, 1, · · · ,m� 1

B(r)
 � B(r) + �(r)k,jVk,j for k, j = 0, 1, . . . ,m� 1

C(r)
 � A(r)

·B(r)

Xi,j � Xi,j + �(r)i,j C
(r) for i, j = 0, 1, . . . ,m� 1.

We call ALG a Strassen-like MM algorithm [32]. Sequential algorithm ALG does O (nw) work
where w = logmR. In Strassen, m = 2 and R = 7.

It is important to observe that the approaches used by Strassen-S , Strassen-W , Strassen-
S-Adaptive , and Strassen-W-Adaptive MM algorithms apply to all Strassen-like MM algo-
rithms.

Lower Bounds. We give the following lower bound of any parallel version of Strassen’s MM
algorithm using s units of space in the binary-forking model.

Theorem 2.8. Let A be a parallel version of Strassen’s MM algorithm which uses s units of extra
space. Then A’s span is ⌦ (max(nw/s, log n)) in the binary-forking model.

14

Proof. We consider the binary-forking model without atomics [6]. In this model, every binary
operation (addition, subtraction, multiplication and division) is associated with a memory loca-
tion. Specifically, the output of such binary operation needs to be written to a memory location.
Concurrent reads from a memory location are allowed, while concurrent writes are not.

Let A be a matrix multiplication serial algorithm with⇥ (nw) work where w � 2. Let T! (n,w, s)
denote the span of any parallel algorithm B that parallelize the serial algorithm A using s units
of space. We do not make any restriction on the number of processors used. We remark that only
heap space is counted in s (all our previous algorithms also allocate space from heap memory).

We get the first lower bound as follows. When we use s units of memory locations, then from
the pigeonhole principle, there must exist a memory location that is subjected to ⇥ (nw/s) write
operations. As concurrent writes to a memory location are not allowed, the following lower bound
holds: T! (n,w, s) = ⌦ (nw/s) .

We get the second lower bound from a more general PRAM CREW model. Thus, it holds
for a more restricted binary-forking model. When we have an unbounded #memory locations and
unbounded #processors, the following lower bound [29] holds for the computation of x1 + x2 +
· · ·+ xn (array-sum) where every si 2 {0, 1}: T! (n,w,1) = ⌦ (log n) .

As matrix multiplication is at least as hard as array-sum, it must have ⌦(log n) span. Combining
both the lower bounds, we get the following: T! (n,w, s) = ⌦ (max(nw/s, log n)) .

3 Sorting

Sorting a set of n numbers is one of the most fundamental problems in computer science. Several
e�cient sorting algorithms exist [31, 29, 2, 21, 8, 28]. In this section, we consider work-optimal
(i.e., performing O (n log n) work) comparison sort algorithms in the binary-forking model. Our
goal is to design a work-optimal comparison sort parallel algorithm with optimal span of O (log n)
in the binary-forking model without atomics.

Cole’s pipelined merge sort [16] has optimal span of O (log n) in the PRAM model. However, it
achieves a span of O

�
log2 n

�
when analyzed in the binary-forking model. Blelloch et al.’s random-

ized sorting algorithm [7] achieves O (n log n) work and O
�
log1.5 n

�
span, both bounds w.h.p. in n.

Cole and Ramachandran’s sample-partition-merge-sort algorithm [17] is based on multi-way merge
and sample sort [23] and has a low span of O (log n log log n). Blelloch et al.’s randomized sorting
algorithm [6] is based on sample sort and has O (n log n) expected work and O (log n) span w.h.p.
in n, but it makes use of the test-and-set instruction and as a result cannot be straightforwardly
adapted to the binary-forking model without atomics.

Avoiding TS and Retaining Expected Work. Our primary strategy for avoiding atomic
TS operations is to use extra space and randomize write locations, rendering collisions unlikely.
In Blelloch et al.’s [6] randomized sorting algorithm, n elements are partitioned by repeatedly
attempting to place them into random locations in ⇥ (n). Since there is a ⇥ (1) likelihood of success
on every write attempt, it is enough for each item to try ⇥ (log n) times to find an unoccupied cell
with high probability; the span of this process is ⇥ (log n). This method cannot be applied in
⇥ (log n) span without TS.

Instead of using test-and-set, we use 2n log n extra space. Each element randomly picks log n
cells and tries to put itself into all of them in parallel. If multiple elements try to put themselves
into the same cell, they collide and only one succeeds. For each element e set a memory location fe
that holds the cell where e should go. After the attempt is completed, if a cell at memory location i
holds element e, then it tries to write its index i into fe. If element e succeeds in putting itself into

15

at least one of the log n randomly chosen cells, then fe will w.h.p. in n hold an index where element
e is stored. After all memory locations fe are populated, compact the elements into contiguous
locations using the content of the memory locations.

In the algorithm by Blelloch et al., every element tries to put itself into a memory location log n
times serially where the success probability of each attempt is 1/2. In our algorithm, each element
tries in parallel log n times where the success probability of each attempt is 1/2. Hence, the work
remains the same, that is ⇥ (n log n). The span is also the same, the is ⇥ (log n). We increase the
success probability for an item to land in an unoccupied place by using ⇥ (log n) times extra space
instead of trying log n times.

Improving Work Bound from Expectation to High Probability. Here we present a sorting
algorithm which takes optimal work and span, both with high probability in n. We achieve this
by first sorting all but o (n) elements of an array in optimal work and span, w.h.p. in n and later
integrating the leftover o (n) elements with the sorted n � o (n) elements. We also give a space-
adaptive sorting algorithm that achieves near-optimal work and span w.h.p. in n for any given
amount of space s.

First we show that all but o (n) elements can be sorted in optimal work and span w.h.p. in n
by using Almost-Sort , a very shallow divide and conquer algorithm of similar design as Blelloch
et al.’s, in that it recursively partitions elements into buckets. Although Blelloch et al.’s algorithm
gives high probability at all levels of recursion, it is only high probability in the size of arrays
passed to the recursive steps, which becomes subpolynomial in n (the original input size) at the
lowest levels of recursion. This causes the related work bound to hold only in expectation. In
Almost-Sort we only use recursive partitioning to depth log log log n, after which we apply the
Cole-Ramachandran deterministic sorting algorithm. This keeps the array size large enough to
achieve a high probability bound on work at all levels of recursion.

Partitioning an array of size n in Almost-Sort is done in two steps. First we sample a set
of
p
n log3 n potential pivots from the array, sort this subset using n"-Way-Sort (see Figure 11),

and select
p
n uniformly spaced elements from it to serve as pivots. Second we attempt to place

every element in the array into two randomly chosen locations in their respective buckets. If two
elements attempt to write to the same location, then both attempts fail. If both of a single element’s
attempts to be written into its partition fail, then that element is dropped and will not appear in
the next recursive step. The pseudocode listing for Almost-Sort is given in figure 5.

We then give a method for recombining the o (n) unsorted elements (those that were dropped
by Almost-Sort) into the sorted array in O (n log n) work and O (log n) span, w.h.p. in n. This
method also depends on using extra space to convert the problem of merging a small unsorted array
with a large sorted array into a series of bins-and-balls type scenarios. The union of Almost-Sort
with this integration method gives us the Full-Sort algorithm, which w.h.p. in n sorts an array

of size n in optimal O (n log n) work and ⇥ (log n) span, using a ⇥
⇣
logn log log logn

log logn

⌘
factor extra

space.
Our main results are given in theorem 3.3 and theorem 3.6.

Lemma 3.1. Partitioning an array of size n into
p
n blocks with oversampling factor log3 n will

produce no blocks with size falling outside of an " = 1/ log2 log n factor of
p
n, with probability at

least 1� n& logn.

Proof. Let ha1, ..., ani be the input array A as a sorted sequence, from which q =
p
n� 1 pivots are

chosen (with repetition) with oversampling factor s = log3 n. If one of the resulting blocks contains
at least (resp. less than) k elements, then there must be a subsequence haj , ..., aj+k& 1i from which
less than (resp. at least) s elements were sampled.

16

Let {x1, ..., x(q+1)s} be the elements sampled from A, and define the Bernoulli variables Xi = 1

if xi 2 haj , ..., aj+k& 1i, Xi = 0 otherwise, and X =
P(q+1)s

i=1 Xi for some arbitrary fixed j. Note that
E(X) = (q + 1)sE(Xi) =

sk'
n
. Let bi be the sizes of the blocks of the partition of A with pivots

xs, x2s, ..., xqs: we then have P (maxi bi � k) P (9j X < s) (resp. P (mini bi < k) P (9j X � s)).
We handle the upper tail by setting k = (1+")

p
n gives us E(X) = (1+")s, from which we can

upper bound the probability of an unexpectedly large partition block by using a Cherno↵ bound
for Poisson Binomial distributions:

P

✓
max

i
bi � (1 + ")

p
n

◆
 P (9j X < s)

 nP (X < (1� "/2)E(X))

✓
1� "/2 >

1

1 + "

◆

 n exp
�
�"2s/8

�

= n exp

✓
� log3 n

8 log4 log n

◆

< (1/2)n& logn (for n � 4).

Similar to the treatment of upper tail, for the lower tail we set k = (1 � ")
p
n, which gives

E(X) = (1� ")s. Applying the Cherno↵ bound for lower tails then shows that

P

✓
min
i

Bi < (1� ")
p
n

◆
 P (9j X � s)

 nP (X > (1 + ")E(Y))

✓
1 + " <

1

1� "

◆

 n exp
�
�"2(1� ")s/4

�

 n exp

✓
� log3 n

8 log4 log n

◆

< (1/2)n& logn (for n � 4).

Combining the upper and lower tails immediately gives a bound on the probability of a su�-
ciently regular partition, P (8i (1� ")

p
n bi (1 + ")

p
n) > 1� n& logn for n � 4.

Corollary 3.1.1. Lemma 3.1 continues to hold with high probability in n for arrays of size m < n
being partitioned into

p
m blocks with fixed " = 1/ log2 log n and oversampling factor log3 n.

Proof. Decreasing the number of elements to be partitioned while holding the oversampling factor
constant can only increase the likelihood of a suitably uniform partition. Therefore, if Lemma 3.1
guarantees high probability of a uniform partition for an array of size n, then that guarantee will
continue to if we lower the number of elements in the array to m < n.

Lemma 3.2. Attempting to place n elements in nm = ⌦
⇣

n logn
log logn

⌘
space will with high probability

in n take O (log n) span, ⇥ (n) work, and result in ⇥
�
n
m

�
collisions.

Proof. [Collisions.] The likelihood of any given element experiencing a collision is less than 1/m,
and therefore the fact that ⇥

�
n
m

�
collisions will occur with high probability follows directly from

a pair of of Cherno↵ bounds, P (X > 2E(X)) < e&E(X)/3 and P (X < E(X)/2) < e&E(X)/8, where
we take X to be the number of collisions.

17

[Work and Span.] We assume that k collisions at the same location will produce a span of
O (k). Consider the set of ⇥ (n/m) elements which were not placed due to a collision: they are
randomly distributed throughout the ⇥ (n) locations that were selected by at least one element, so
with probability greater than 1� exp(�⇥

�
n/m2

�
) there are ⇥

�
n/m2

�
of them that collided with

one another. By induction, there are ⇥
�
n/md

�
locations where d elements collided, w.h.p. in n

for all d such that n/md = ⌦ (log n). The remaining O (log n) locations where ⌦ (logm n) elements
collided contribute, at most, O

�
log2 n

�
work and O (log n) span.

The span is therefore dominated by the time taken to spawn n processes, T! (n) = ⇥ (log n),

and work is given by T1(n) = ⇥
⇣
n+ n

Plogm n
d=1

d2

md

⌘
= ⇥ (n), where we have used the identity

P!
j=1 j

2xj = x(1+x)
(1&x)3 ⇠ x for x small.

Theorem 3.3. The Almost-Sort algorithm (Figure 5) takes O (n log n) work w.h.p. in n,

⇥ (log n) span w.h.p. in n, and ⇥
⇣
n logn log log logn

log logn

⌘
space to sort all but ⇥

⇣
n log2 logn

log2 n log log logn

⌘
el-

ements w.h.p. in n of an array of size n.

Proof. [Work.] Let n be the size of the array passed to Almost-Sort in the initial call, and nc

be the size of the array passed at some point in the recursion tree. We terminate recursion at
depth log log log n, at which point the Cole-Ramachandran sorting algorithm is applied, taking
O (nc log nc) work. All higher levels of recursion sample

p
nc pivots with oversampling factor log3 n,

which are sorted using n"-Way-Sort with " = 1/2, after which Almost-Sort is called on the
p
nc partition blocks, each of which will be no larger than (1 + 1/ log2 log n)

p
nc. For every call

to Almost-Sort there is O

⇣
nc

logn log log logn
log logn

⌘
work done on prefix sums and O (nc log nc) work

done on the binary searches by which elements find which partition block to be placed in. Thus
the work is T1(nc, n) = O (nc log nc) when depth is greater than log log log n, and T1(nc, n) =

O

⇣
(
p
nc log

3 n)3/2 + nc
logn log log logn

log logn + nc log nc

⌘
+
p
ncT1((1 + 1/ log2 log n)

p
nc, n) otherwise.

Note that Almost-Sort is called O (n log log log n) times, and the likelihood of a suitably
uniform partition during any particular call of Almost-Sort is bounded below by 1�n& logn (via
corollary 3.1.1), so all partitions will be suitably uniform with high probability in n.

We can upper bound w.h.p. the size of arrays nc passed to depth d with (1+1/ log2 log n)dn2" d

(1 + 1/ log2 log n)log3/2 lognn2" d
" exp(1/ log log n)n2" d

⇠ (1 + 1/ log log n)n2" d
. Therefore in order

to be able to apply Lemma 3.2 to the array partitioning which occurs at depth d, we will need

⌦
⇣
n2" d logn

log logn

⌘
space per function instance.

There are n1& 2" d
instances of n"-Way-Sort being called at depth d, which cumulatively take

O

⇣
n
nc
(
p
nc log

3 n)3/2
⌘
= O (n) work for4 nc = ⌦

�
log18 n

�
. The size of arrays being processed at

the lowest level of recursion is O
�
n1/ log logn

�
, so the total work done by the n/nc calls to Cole-

Ramachandran is O

⇣
n logn
log logn

⌘
. Summing across all levels, we have a total of O (n log n) work

(primarily from the binary searches that occur during partitioning).
[Span.] Following a similar line of reasoning as was used for the work bound, we note that

n"-Way-Sort (still with " = 1/2) has span O (log nc), and Cole-Ramachandran has span

4Note that when d < log log log n, we have n" 1/4
c <

!
n1/ log logn

" " 1/4
< log" c n for all positive constants c.

18

Almost-Sort (nc, n, l0, d,m,B,C,D)

nc : size of array to sort (only B[l0, ..., l0 + nc � 1] is occupied)

n : size of the array at the highest level of recursion

l0 : location where the array to sort begins

d : depth of current call in recursion tree

m : multiple of extra memory to use

B[l0, ..., l0 + ncm� 1] : contains array to be sorted

C[l0, ..., l0 + ncm� 1] : ancillary space

D[l0, ..., l0 + ncm� 1] : where prefix sums will be stored (for indexing)

1. if d � log log log n do Cole-Ramachandran (B[l0, l0 + nc � 1]) and return

{ Partitioning B; choose
p
nc � 1 pivots with oversampling factor s } .

2. s log3 nc

3. P sample with repetition (
p
nc + 1)s elements from B[l0, ..., l0 + nc � 1]

4. P n! -Way-Sort (P, 1/2)

5. P [0] �1; P [(
p
nc + 1)s] +1

{ Nondeterministically partition B into C } .

6. parallel for a 2 B[l0, ..., l0 + nc � 1] do

7. Find some i s.t. P [i · s] a P [(i+ 1)s]

8. Choose a random number j 2 [0, ...,m
p
nc � 1]

9. Attempt to assign C[im
p
nc + j] a; in case of collision do nothing

10. parallel for i l0 to l0 + nc � 1 do B[i] null

{ Compact the partitions of C into B } .

11. parallel for i 0 to
p
nc � 1 do

12. lo l0 + im
p
nc; hi l0 + (i+ 1)m

p
nc � 1

13. D[lo, ..., hi] Indicator-Prefix-Sum (C[lo, ..., hi])

14. parallel for j lo to hi do

15. D[j] D[j] + im
p
nc

16. parallel for i 2 [l0, ..., l0 + ncm� 1] do

17. if C[i] is not null do

18. B[D[i]] C[i]

19. C[i] null

{ Divide and Conquer } .

20. parallel for i 0 to
p
nc � 1 do

21. Almost-Sort (
p
nc, n, l0 + im

p
nc, d+ 1,m,B,C,D)

{ Compact the final result } .

22. C B; D Indicator-Prefix-Sum (C)

23. parallel for i 0 to ncm� 1 do

24. if C[i] is not null then

25. B[D[i]] C[i]

Figure 5: Listing for the randomized sorting algorithm Almost-Sort . Boolean-Prefix-Sum (A)
is a standard prefix sum taken over the indicator function of A, i.e. the function which is 0 where
A[i] is null, and 1 elsewhere. Note that on line 7 we have an implicit binary search across

p
nc

elements.

19

O (log nc log log nc), so the recurrence relation for span is

T! (nc, n)

(
O (log nc log log nc) if depth log log log n,

O
�
log(nc log

3 n)
�
+ T! ((1 + 1/ log2 log n)

p
nc, n) else,

which, on substituting nc = n1/ log logn at lowest depth, is solved by T! (n, n) = O (log n).

[Space.] Almost-Sort uses ⇥
⇣
n logn log log logn

log logn

⌘
space, by construction. All partitioning for a

node is done within a chunk of memory inherited from the parent which instantiated it, and the

root node begins with ⇥
⇣
n logn log log logn

log logn

⌘
memory.

[Unsorted Elements.] At recursive depth d there will be n1& 2" d
arrays of size ⇥

⇣
n2" d

⌘
from

which we are selecting pivots then partitioning. By Lemma 3.2 this will produce ⇥
⇣

n log logn
logn log log logn

⌘

collisions, and attempting to place elements twice each will lower this number to⇥
⇣

n log2 logn
log2 n log2 log logn

⌘

elements which failed to find a place in their respective partitions. Summing across all levels of

recursion then gives a total of ⇥
⇣

n log2 logn
log2 n log log logn

⌘
elements left unsorted due to collisions.

Lemma 3.4. With high probability in n, there are no sequences of length ⇥
⇣

logn
log logn

⌘
in the array

A that have no elements which appear in B = Almost-Sort (A, n).

Proof. We know with high probability that the bins at all stages of Almost-Sort ’s divide and
conquer process are filled no more than within a (1+1/ log log n) factor above or below expectation
(see theorem 3.3), and this gives us an upper bound on the likelihood that any given element aj 2 A
fails to be included in B:

P (aj /2 B) 1�

0

@1�
1 + 1/ log log n
log2 n log2 log logn

log2 logn

1

A
log log logn

⇠
log2 log n

log2 n log log log n
⌘ �.

This result also follows from our high probability bound on the number of collisions which occur
during Almost-Sort .

Now we can repeat the argument made for Lemma 3.1, interpreting B as having been uniformly
randomly sampled5 from A, and thereby bounding the likelihood that a subsequence of length `
exists in A from which no elements are included in B.

We define the indicator variables Yi to be 1 if bi 2 haj , ..., aj+`& 1i and 0 otherwise, and Y ⌘P
i Yi, from which we have P (Y = 0) ⇠

Q
i P (aj+i /2 B) �`. The probability of a subsequence of

length ` being contained in A but completely absent from B is then bounded with P (9j Y = 0)
nP (Y = 0) n�`, so we find that there is a polynomially small chance of there being a subsequence

of length ` = logn
log 1/� = ⇥

⇣
logn

log logn+log log log logn& log log logn

⌘
which is entirely absent from B.

Recombining Unsorted Elements. We now present a method for merging the unsorted ele-
ments A \ B with the sorted subarray B = Almost-Sort (A), using a sequence of balls-and-bins
type arguments to achieve high probability that no element remains unsorted. The rough outline
is as follows: (1) Partition A \ B by the elements in B, and sample elements into their respective
partition blocks (found via a binary search through B). Use this to index the nonempty partition

5Using P (aj /2 B) � allows us to unconditionally upper bound the chance that none of a sequence of elements
will end up in B.

20

block. (2) Partition A \ B again by the elements in B, this time distributing space only to the
blocks that are known to be nonempty. Use the result to estimate the exact size of each partition
block. (3) Partition A by the elements in B, now distributing memory so that every block has

⌦
⇣

logn
log logn

⌘
times more space than needed to compactly store the elements that are bound for it.

Sample elements of A into their respective partitions, making log n parallel placement attempts for
each element. (4) Remove all but one copy of each element from their associated partition blocks,
sort each partition block, and use a prefix sum to compact the entire array. With high probability
the result is a sorted copy of the entire array A.

Lemma 3.5. The unsorted set of elements A\B can with high probability be merged with the sorted

subarray B = Almost-Sort (A) in O (n log n) work, ⇥ (log n) span, and ⇥
⇣
n logn log log logn

log logn

⌘
space.

Proof. [Step 1.] We start by associating every element of B with a space of size ⇥
⇣
logn log log logn

log logn

⌘
,

and then place elements from A\B into a single random location in their respective buckets, where
collisions of k elements in the same location result in O (k) span and no element being successfully
placed. This will take O (n) work and ⇥ (log n) span, even if the maximum number of collisions
occur (which are bounded by lemma 3.4). We then run ⇥ (n) parallel prefix sums to find the

number of elements in each of the ⇥ (n) partition blocks, taking ⇥
⇣
n logn log log logn

log logn

⌘
work, after

which we index the nonempty blocks by way of a prefix sum taking ⇥ (n) work. Partition blocks
with no associated elements do not need any space devoted to them, so the number of buckets we

have to consider has been reduced from ⇥ (n) to O

⇣
n log2 logn

log2 n log log logn

⌘
.

[Step 2.] We give each nonempty partition block a space of size ⇥
⇣
log3 n log2 log logn

log3 logn

⌘
and again

place every element in A \ B into a single location in its associated bucket. By Lemma 3.2 the

number of elements in every bucket will be within a ⇥
⇣

log2 logn
log2 n log2 log logn

⌘
factor of its maximum

value. Running a prefix sum through each bucket gives the total number of elements associated

with it to within a ⇥
⇣

log2 logn
log2 n log2 log logn

⌘
factor; this cumulatively takes ⇥

⇣
n logn log log logn

log logn

⌘
work.

A prefix sum over the ⇥ (n) individual bucket sizes then gives an approximation of the bounds of
every bucket in the final sorted array.

[Step 3.] Using the bounds found in step 2, we give each bucket ⇥
⇣

log3 logn
log3 n log2 log logn

⌘
times more

space than the number of elements that will be going into it. Now we can sample every unsorted

item into its associated partition block log n times, as we have m = ⇥
⇣

log3 logn
log2 n log2 log logn

⌘
times

extra space for Lemma 3.2, which is su�cient for a high probability bound. No more than 1 in

⇥
⇣

log3 logn
log2 n log2 log logn

⌘
write attempts will produce a collision, so we have with probability greater

than 1� n
(logn)logn that every unsorted element will be placed into its bucket at least once.

[Step 4.] All duplicates items in each partition are found by using ⇥ (n) prefix-sum-like methods to
search over the log n locations where each element a 2 A was placed. We run n log log logn

log logn of these

methods in parallel at a time (so there are ⇥
⇣

log logn
log log logn

⌘
chunks of them run serially) in order

to stay within our space bound, taking O (n log n) work and ⇥
⇣

log2 logn
log log logn

⌘
span. After removing

duplicate elements we index all nonempty memory locations by running a prefix sum across the

entirety of the ⇥
⇣
n logn log log logn

log logn

⌘
space being used, and then use those indices to compact down

all elements into our final sorted array.

21

Full-Sort (A, n)

{ Part 1: Sorting the majority of A} .

1. m log n log log log n/ log log n; Allocate arrays B,C,D of size nm; B[0, ..., n� 1] A

2. Almost-Sort (n, n, 0, 0,m,B,C,D)

3. num sorted smallest i s.t. B[i] = null

{ Part 2: Combining unsorted elements into B} .

4. Set all elements of C and D to null

5. Allocate arrays E,F of size n

{ Pass 1: Finding and indexing all nonempty buckets } .

6. parallel for a 2 A[0, ..., n� 1] do

7. Find smallest i s.t. B[i] a < B[i+ 1]

8. if a 6= B[i] then

9. Choose a random number j 2 [0, ...,m� 1]

10. Attempt to assign C[i ·m+ j] a; in case of collision do nothing

11. D Indicator-Prefix-Sum (C)

12. parallel for i 0 to n do

13. if D[i · block size] 6= D[(i+ 1) · block size� 1] then E[i] = 1

14. F Prefix-Sum (E)

15. Set all elements of C and D to null

{ Pass 2: Approximating the size of each bucket } .

16. block size log3 n log2 log log n/ log3 log n

17. parallel for a 2 A[0, ..., n� 1] do

18. Find smallest i s.t. B[i] a < B[i+ 1]

19. if a 6= B[i] and E[i] = 1 do

20. Choose a random number j 2 [0, ..., block size� 1]

21. Attempt to assign C[(F [i]� 1) · block size + j] a; in case of collision do nothing

22. D Indicator-Prefix-Sum (C)

23. parallel for i 0 to num sorted � 1 do

24. if E[i] = 0 then E[i] = 1

25. else E[i] = D[F [i] · block size� 1]�D[(F [i]� 1) · block size]

26. F Prefix-Sum (E)

27. clear C and D

{ Pass 3: Sampling elements into their buckets with log n repetitions } .

28. parallel for i 0 to n� 1 do

29. parallel for j 0 to log n� 1 do

30. Choose a random number k = H(j, (F [i]� E[i])m,F [i]m� 1)

31. Attempt to assign C[k] a; in case of collision do nothing

{ Removing duplicates and compacting } .

32. chunk size n log log log n/ log log n

33. for i 0 to n/chunk size� 1

34. parallel for a 2 A[i · chunk size, ..., (i+ 1) · chunk size� 1] do

35. Find smallest i s.t. B[i] a < B[i+ 1]

36. Keep-Single (C, a, n,H, (F [i]� E[i])m,F [i]m� 1)

37. parallel for i 0 to num sorted � 1 do

38. D[(F [i]� E[i])m, ..., F [i]m� 1] Indicator-Prefix-Sum (C[(F [i]� E[i])m, ..., F [i]m� 1])

39. parallel for j (F [i]� E[i])m to F [i]m� 1 do

40. D[j] D[j] + (F [i]� E[i])m

41. parallel for i 0 to nm� 1 do

42. if C[i] 6= null then { A[D[i]] C[i];C[i] null }

43. parallel for i 0 to num sorted � 1 do

44. lo (F [i]� E[i])m; hi lo + E[i]� 1

45. A[lo, ..., hi] Cole-Ramachandran (A[lo, ..., hi])

46. D Indicator-Prefix-Sum (A)

47. parallel for i 0 to nm� 1 do

48. if A[i] 6= null then { C[D[i]] A[i];A[i] null }

49. A C

Figure 6: Listing for Full-Sort . H(i, lo, hi) on line 30 is a hash function which maps the triple
(i, lo, hi) to a single value in the range [lo, ..., hi]. Keep-Single (A, a, n,H, lo, hi) on line 36 is a
function which performs a Prefix-Sum -like operation to index the instances of a at the (assumed
distinct) locations H(i, lo, hi) (i = 0, ..., log n�1), and then sets all but one of the instances to null.

22

Theorem 3.6. The Full-Sort algorithm (Figure 6) sorts an array of size n in O (n log n) work

w.h.p., ⇥ (log n) span w.h.p., and ⇥
⇣
n logn log log logn

log logn

⌘
space.

Proof. Directly follows from theorem 3.3 and lemma 3.5.

Space-Adaptive Sorting Algorithm. In the previous paragraphs, we present a ⇥ (log n) span
parallel sorting algorithm in the binary-forking model without atomic TS using n · x extra space,
where x = ⇥ (log n log log log n/ log log n). We now present a space-adaptive sorting algorithm
which, given s 2 [n, n · x] space, achieves near-optimal span.
1. We divide the input into m equal-sized segments Ai such that (n/m)x = s.
2. For each segment Ai of size n/m, use Full-Sort with s amount of extra space.
3. Merge the m segments pairwise recursively.

Theorem 3.7. The Sort-Adaptive algorithm sorts an array of size n in O (n log n) work w.h.p.
in n, O

�
(n/s) log2 n

�
span w.h.p. in n, using ⇥ (s) amount of space.

Proof. Sorting each segment takes ⇥ (log(n/m)) span and ⇥ ((n/m) log n) work w.h.p. in n. As
sorting each segment consumes the entire extra space s, these m calls to Full-Sort are made
serially. Hence, these m sorting steps take ⇥ (m · log(n/m)) = ⇥ ((nx/s) log n) span w.h.p. in n.
Merging m sorted segments takes the following span.

logmX

i=1

⇥
⇣
log

m

2i
+ log 2inm

⌘
=

logmX

i=1

⇥
⇣
logm+ log

n

m

⌘
= ⇥ (log n logm) .

The span of Sort-Adaptive is O
�
n log2 n/s

�
w.h.p. in n. The work needed to merge m sorted

segments is ⇥ (n log log n) w.h.p. in n. Hence, the overall work of Sort-Adaptive is ⇥ (n log n)
w.h.p. in n.

4 Fast Fourier Transform

The Discrete Fourier Transform (DFT) of an array a of n complex numbers is the array y computed

as y[i] =
Pn& 1

j=0 a[j]w
& ij
n for all i 2 [0, n�1], where wn = e2⇡

'
& 1/n is a primitive nth root of unity. A

Fast Fourier Transform (FFT) is an algorithm that computes the DFT of an array rapidly. FFT is
often considered as one of the most important algorithms of the 20th century. It is extensively used
in digital signal processing. Several FFT algorithms have been designed that perform O (n log n)
work. For example, prime-factor algorithm (or Good-Thomas’ FFT) [27, 38], Bruun’s FFT [9], and
Winograd’s FFT [43]. Designing an FFT algorithm with o (n log n) work is an open problem.

Consider the recursive divide-and-conquer Cooley-Tukey FFT algorithm [18] and its special
case, the radix-2 FFT algorithm [19]. A straightforward parallelization of the generic Cooley-
Tukey algorithm [18] has a complexity of O (n log n) work (and space) and O (log n log log n) span.
A simple parallelization of the radix-2 algorithm [19] has O

�
log2 n

�
span. In this section, we

aim to design a parallel FFT algorithm with close to optimal span for the binary-forking model
without atomics keeping work as closely as possible to O (n log n). To this end, we first design a
simple single-point FFT algorithm that can be used to compute a single entry of the DFT. We
then carefully combine an e�cient variant of this algorithm with the radix-2 FFT and mixed-radix
FFT.

23

�*�*�8 �*�*�8 �*�*�8

�1�Y�P�X�M�T�P�]���E�P�P��
�I�R�X�V�M�I�W

�F�]���E�T�T�V�S�T�V�M�E�X�I��
�X�[�M�H�H�P�I���J�E�G�X�S�V�W

�*�*�8

�*�*�8

�*�*�8

Figure 7: The n�-way FFT algorithm. Here, r = n�.

n�-way FFT (Cooley-Tukey Algorithm, [18]). The n�-way FFT algorithm, for � 2 [1/ log n, 1/2],
is defined as follows. We view the n-sized array as a n1&�

⇥n� matrix, as shown in Figure 7. In the
first phase, we compute FFT of each of the columns recursively in parallel. We then multiply all
entries of the matrix by appropriate twiddle factors. In the second phase, we compute FFT of each
of the rows recursively in parallel. Finally, the resultant matrix read in the column-major order is
the required DFT.

The work and the span recurrences for the n�-way FFT algorithm are as follows. Suppose c � 1
is a fixed constant. If n c, then T1(n) = O (1) and T! (n) = O (1). If n > c, then

T1(n) = n�T1(n
1&�) + n1&�T1(n

�) +O (n) ,

T! (n) = T! (n1&�) + T! (n�) +O (log n) .

The work performed by this algorithm is O (n log n) for all values of �. If we set � = 1/ log n,
we obtain the 2-way FFT algorithm [18, 19], with span O

�
log2 n

�
. On the other hand, if we set

� = 1/2, we get the
p
n-way FFT algorithm, a special case of the algorithm given in [18], with

span O (log n log log n). To the best of our knowledge, the
p
n-way FFT algorithm achieves the

best span.

Single-point 2-way FFT. A single-point FFT evaluation means that we can compute a single
entry of the DFT independently without computing the entire DFT. In other words, the computa-
tion of y[i] does not share work with the computation of y[j] for all i, j 2 [0, n� 1] and i 6= j. The
single-point 2-way algorithm FFT-sp is shown in Figure 8 (left). Figure 8 (right) shows a visual
depiction of how an entry corresponding to the ith entry of the DFT is computed at recursion level
` using entries corresponding to the ith entries of the DFT’s of the two child nodes at recursion
level `+ 1, for ` 2 [0, log n).

Consider the binary recursion tree produced by the algorithm. It is important to note that an
entry in the DFT of a node can be computed with two entries in the DFT’s of the child nodes. We
do not need to store the DFT entries at every level. They can be computed recursively and on-the-
fly. A DFT entry at the root node of the recursion tree can be computed with O

�
2logn

�
= O (n)

work and O (log n) span. This implies that we can compute all entries of the DFT at the root node
performing O

�
n · 2logn

�
= O

�
n2

�
work in O (log n) span.

Lemma 4.1. The single-point 2-way FFT algorithm has a complexity of O
�
n2

�
work, O (n) space,

and O (log n) span.

2-way FFT with Stages. The standard 2-way FFT algorithm has a complexity of O (n log n)
work due to high work-sharing across threads and O

�
log2 n

�
span due to expensive local synchro-

nization points. In contrast, the single-point 2-way FFT algorithm has a complexity of O
�
n2

�
work

due to no work-sharing across threads and O (log n) span due to inexpensive local synchronization

24

FFT-sp (x, `, n, i)

Input: Input array x, level `, size n, entry i
Output: DFT entry y" [i]

1. if n = 1 then return x[0]

2. j i� (n/2)⇥ [i < n/2]; w w! j
n

3. par: u FFT-sp (x, `+ 1, n/2, j)

v FFT-sp (x+ 2" , `+ 1, n/2, j)

4. return u� wv ⇥ (�1)[i<n/ 2]
y! +1 [i] = u

y! [i] = u + wv

level ! :

level ! + 1 :

y! [n/ 2 + i] = u ! wv

y! +1 [i] = v

Figure 8: Left: Single-point FFT algorithm to compute the ith entry of the DFT of n-sized array
x. Symbol [] represents the Iversion bracket. Initial invocation is FFT-sp (a, 1, n, i). Right: Single-
point FFT evaluation of DFT entry y`[i] at level ` using the DFT entries y`+1[i] of the child nodes
at level `+ 1. Note that y`[n/2 + i] also depends on the y`+1[i] entries.

Stage 1/!
Work = O(n!)
Height = ! logn

Stage 1

Stage 1/! ! 1
Height = ! logn

Height = ! logn

Work = O(n!)

Work = O(n!)

Figure 9: Stages in the 2-way FFT algorithm with single-point computations.

points. We now carefully combine the two algorithms to get advantages of both the worlds: low
work and low span.

Consider Figure 9, in which the log n levels are split into 1/ stages, each stage containing
 log n levels, for 2 [1/ log n, 1]. The core idea of the algorithm is as follows. There will be 1/
global synchronization points, one per stage. We compute the DFT at a root node of stage i using
the DFT’s at the root nodes of stage i+1 using the single-point 2-way FFT algorithm. We compute
and store the DFT’s in the root nodes of all stages.

Lemma 4.2. The 2-way FFT algorithm with stages has a complexity of O
�
(1/)n1+

�
work, O (n)

space, and O ((1/) log n) span, where 2 [1/ log n, 1].

Proof. [Work.] There are 1/ stages. The height of each stage is log n. Total number of cells at
the root nodes of each stage is O (n). The computation of each cell requires O

�
2 logn

�
= O

�
n

�

work. So, the total work is O
�
(1/)n1+

�
. [Span.] The execution of stages is sequential. As there

are O (n) cells at the root nodes of each stage, the span for launching these cells is O (log n). The
span for computing a DFT entry (i.e., FFT-sp) is O ((1/) log n). [Space.] Storing the DFT array
at each of the 1/ stages requires O ((1/)n) space. However, we can reuse two arrays to perform
all computations. Hence, we just need O (n) space.

p
n-way FFT and 2-way FFT with Stages. The core idea of the algorithm is as follows.

We execute the
p
n-way FFT algorithm for the first log(1/") levels of the recursion tree, where

25

FFT-2way-stages (y, a, n,)

1. parallel for i 0 to n� 1 do y(0) [i] a[i]

2. for stage s 1 to 1/ do

3. `s (1� s) log n ! level number

4. parallel for j 0 to 2"s � 1 do

5. parallel for i 0 to n/2"s � 1 do

6. y("s) [j + i · 2"s]

FFT-sp (y(" (s! 1)) + j, `s, n/2"s , i, `s! 1)

FFT-sp (x, `, n, i, `")

Input: Input array x, level `, size n, entry i,
stop at level `"

Output: DFT entry y" [i]

1. if ` = `" then return x[i]

2. j i� (n/2)⇥ [i < n/2]; w w! j
n

3. par: u FFT-sp (x, `+ 1, n/2, j, `")

v FFT-sp (x+ 2" , `+ 1, n/2, j, `")

4. return u� wv ⇥ (�1)[i<n/ 2]

Figure 10: The 2-way FFT algorithm with stages.

1/" 2 [2, log n]. We then switch to the 2-way FFT algorithm with stages.

Theorem 4.3. The
p
n-way combined with 2-way with stages FFT algorithm has a complexity of

O

⇣
n logf(n,") n

⌘
work, O (n) space, and O (log(1/") log n) span, where 1/" 2 [2, log n] and f(n, ") =

(1/ log log n)(log n/((1/") log(1/")) + log((1/") log(1/"))).

Proof. From Lemma 4.2, we have the following bounds for the 2-way FFT: T (
1(m,) = O

�
(1/)m1+

�

and T (
! (m,) = O ((1/) logm), where, 2 [1/ logm, 1]. Then, the work and span recurrences

for the
p
n-way combined with 2-way with stages algorithm are as follows:

T1(m)

(
T (
1(m,) if m n",

2m1/2T1(m1/2) +O (m) if m > n".
T! (m)

(
T (

! (m,) if m n",

2T! (m1/2) +O (logm) if m > n".

Expanding the recurrences, we get

T1(n) (1/")n1& "T (
1(n

",) + c · n/"

T! (n) (1/")T (
! (n",) + c(

· log(1/") log n

for positive constants c and c(. Substituting the values of T (
1 and T (

! , we obtain T1(n) = O
�
(1/("))n1+"

�

and T! (n) = O ((1/ + log(1/")) log n). We set = 1/ log(1/"). Writing our work bound in the

form T1(n) = O

⇣
n logf(n,") n

⌘
, we can easily find a corresponding function f(n, "). Direct compu-

tation shows that f(n, ") = (1/ log log n)(log n/((1/") log(1/")) + log((1/") log(1/"))).

n1+" /(") = n logf(n,") n =) 1 + " log n+ log(1/(")) = 1 + f(n, ") log log n (taking log)

f(n, ") = (" log n+ log(1/(")))/ log log n = (1/ log log n)(log n/((1/") log(1/")) + log((1/") log(1/")))

When = 1/ log(1/"), the span is O (log(1/") log n). Hence, the theorem follows.

Corollary 4.3.1. The
p
n-way combined with 2-way with stages FFT algorithm has a complexity of

O

⇣
n logg(n) n

⌘
work, O (n) space, and O (log n log log log n) span, where g(n) < 2 for n < 1010,000.

Proof. Set 1/" = (log log n)2 and g(n) = f(n, ") in Theorem 4.3.

26

5 Conclusion

In this paper, we presented several fundamental low-span algorithms in the binary-forking model
without using locks and atomic instructions. Our parallel algorithms perform work (almost) the
same as that of the serial algorithms from which they are derived. All our results improve known
results in the binary-forking model with and without atomics.

We introduced the technique of single-point computation in stages through Strassen’s
MM and FFT to carefully set a balance between high work-sharing and high span of the given
algorithm and low work-sharing and low-span of the single-point computation variant to obtain
parallel algorithms with optimal/near-optimal span without work blow-up. This technique can be
used to design e�cient parallel algorithms for other problems too.

We also presented a randomized sorting algorithm with optimal span and optimal work, both
bounds are w.h.p. in the number of elements being sorted.

A few interesting problems (in the binary-forking model without using locks and atomic in-
structions) that one could aim to solve in the future are as follows: (1) Our parallel Strassen’s
MM algorithm achieves O (nw log log n) work and optimal O (log n) span (or O (nw) work and
O (log n log log log n) span). Design a Strassen’s MM algorithm with O (nw) work and optimal
span. (2) Our randomized comparison sorting algorithm uses concurrent writes and achieves opti-
mal O (n log n) work and optimal O (log n) span simultaneously, both bounds are with high proba-
bility in n, and uses !(n) space. Design a randomized sorting algorithm that uses exclusive writes
and achieves optimal work and optimal span bounds, both bounds w.h.p., and uses linear space.
(3) Design a comparison sorting algorithm that uses exclusive writes and achieves optimal work and

optimal span. (4) Our FFT algorithm achieves O
⇣
n logg(n) n

⌘
work and O (log n log log log n) span,

where g(n) < 2 for n < 1010,000. Design an FFT algorithm with O (n log n) work and O (log n)
span.

Acknowledgments

This research was supported by NSF grants CNS-1553510, CCF-1439084, CNS-1938709, CCF-
1617618, CCF-1716252, CCF-1725543, and CCF-1725428.

27

References

[1] Umut A Acar, Guy E Blelloch, and Robert D Blumofe. The data locality of work stealing. In
ACM symposium on Parallel algorithms and architectures, pages 1–12, 2000.

[2] Selim G Akl. Parallel sorting algorithms, volume 12. Academic press, 2014.

[3] Naama Ben-David, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Yan Gu, Charles
McGu↵ey, and Julian Shun. Parallel algorithms for asymmetric read-write costs. In ACM
Symposium on Parallelism in Algorithms and Architectures, pages 145–156, 2016.

[4] Guy E Blelloch, Rezaul Alam Chowdhury, Phillip B Gibbons, Vijaya Ramachandran, Shimin
Chen, and Michael Kozuch. Provably good multicore cache performance for divide-and-conquer
algorithms. In SODA, volume 8, pages 501–510. Citeseer, 2008.

[5] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Harsha Vardhan Simhadri.
Scheduling irregular parallel computations on hierarchical caches. In ACM symposium on
Parallelism in algorithms and architectures, pages 355–366, 2011.

[6] Guy E Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures,
pages 89–102, 2020.

[7] Guy E Blelloch, Phillip B Gibbons, and Harsha Vardhan Simhadri. Low depth cache-oblivious
algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures, pages 189–
199, 2010.

[8] Guy E. Blelloch, Charles E. Leiserson, Bruce M Maggs, C Greg Plaxton, Stephen J Smith, and
Marco Zagha. An experimental analysis of parallel sorting algorithms. Theory of Computing
Systems, 31(2):135–167, 1998.

[9] Georg Bruun. z-transform dft filters and ↵t’s. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):56–63, 1978.

[10] Rezaul Chowdhury, Pramod Ganapathi, Yuan Tang, and Jesmin Jahan Tithi. Provably e�-
cient scheduling of cache-oblivious wavefront algorithms. In ACM Symposium on Parallelism
in Algorithms and Architectures, pages 339–350, 2017.

[11] Rezaul Chowdhury, Pramod Ganapathi, Jesmin Jahan Tithi, Charles Bachmeier, Bradley C
Kuszmaul, Charles E Leiserson, Armando Solar-Lezama, and Yuan Tang. Autogen: Automatic
discovery of cache-oblivious parallel recursive algorithms for solving dynamic programs. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, page 10.
ACM, 2016.

[12] Rezaul Chowdhury, Pramod Ganapathi, Stephen Tschudi, Jesmin Jahan Tithi, Charles Bach-
meier, Charles E Leiserson, Armando Solar-Lezama, Bradley C Kuszmaul, and Yuan Tang.
Autogen: Automatic discovery of e�cient recursive divide-8-conquer algorithms for solving
dynamic programming problems. ACM Transactions on Parallel Computing, 4(1):4, 2017.

[13] Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-oblivious dynamic programming.
In SODA, pages 591–600, 2006.

28

[14] Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-e�cient dynamic programming
algorithms for multicores. In SPAA, pages 207–216, 2008.

[15] Rezaul Alam Chowdhury and Vijaya Ramachandran. The cache-oblivious gaussian elimina-
tion paradigm: theoretical framework, parallelization and experimental evaluation. Theory of
Computing Systems, pages 47(4):878–919, 2010.

[16] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.

[17] Richard Cole and Vijaya Ramachandran. Resource oblivious sorting on multicores. ACM
Transactions on Parallel Computing, 3(4):1–31, 2017.

[18] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[19] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli↵ord Stein. Introduction to
algorithms. MIT press, 2009.

[20] Rathish Das, Shih-Yu Tsai, Sharmila Duppala, Jayson Lynch, Esther M Arkin, Rezaul Chowd-
hury, Joseph SBMitchell, and Steven Skiena. Data races and the discrete resource-time tradeo↵
problem with resource reuse over paths. In ACM Symposium on Parallelism in Algorithms
and Architectures, pages 359–368, 2019.

[21] Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Computing Surveys, 24(4):441–476, 1992.

[22] http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html .

[23] W Donald Frazer and Archie C McKellar. Samplesort: A sampling approach to minimal
storage tree sorting. Journal of the ACM, 17(3):496–507, 1970.

[24] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Transactions on Algorithms (TALG), 8(1):4, 2012.

[25] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation of the cilk-5
multithreaded language. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 212–223, 1998.

[26] Pramod Ganapathi. Automatic Discovery of E�cient Divide-&-Conquer Algorithms for Dy-
namic Programming Problems. PhD thesis, Department of Computer Science, Stony Brook
University, 2016.

[27] Irving John Good. The interaction algorithm and practical fourier analysis. Journal of the
Royal Statistical Society: Series B (Methodological), 20(2):361–372, 1958.

[28] Daniel S. Hirschberg. Fast parallel sorting algorithms. Communications of the ACM, 21(8):657–
661, 1978.

[29] J. JaJa. An Introduction to Parallel Algorithms. Addison Wesley, 1997. URL: https://books.
google.com/books?id=9BpYtwAACAAJ.

[30] Mohammad Mahdi Javanmard, Pramod Ganapathi, Rathish Das, Zafar Ahmad, Stephen
Tschudi, and Rezaul Chowdhury. Toward e�cient architecture-independent algorithms for
dynamic programs. In International Conference on High Performance Computing, pages 143–
164, 2019.

29

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://books.google.com/books?id=9BpYtwAACAAJ
https://books.google.com/books?id=9BpYtwAACAAJ

[31] Donald E Knuth. The art of computer programming: Volume 3: Sorting and Searching.
Addison-Wesley, 1998.

[32] William F McColl and Alexandre Tiskin. Memory-e�cient matrix multiplication in the bsp
model. Algorithmica, 24(3-4):287–297, 1999.

[33] V. Y. Pan. Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and
canceling for constructing fast algorithms for matrix operations. In Symposium on Foundations
of Computer Science, pages 166–176, 1978.

[34] Vijaya Ramachandran and Elaine Shi. Data oblivious algorithms for multicores. arXiv preprint
arXiv:2008.00332, 2020.

[35] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356,
1969.

[36] Yuan Tang, Ronghui You, Haibin Kan, Jesmin Jahan Tithi, Pramod Ganapathi, and Rezaul A
Chowdhury. Improving parallelism of recursive stencil computations without sacrificing cache
performance. In Workshop on Optimizing Stencil Computations, pages 1–7, 2014.

[37] https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.110%29.aspx .

[38] Llewellyn H Thomas. Using a computer to solve problems in physics. Applications of digital
computers, pages 44–45, 1963.

[39] https://www.threadingbuildingblocks.org .

[40] J. J. Tithi, D. Matani, G. Menghani, and R. A. Chowdhury. Avoiding locks and atomic
instructions in shared-memory parallel bfs using optimistic parallelization. In International
Symposium on Parallel Distributed Processing, Workshops and PhD Forum, pages 1628–1637,
2013.

[41] Jesmin Jahan Tithi. Engineering High-performance Parallel Algorithms with Applications to
Bioinformatics. PhD thesis, Department of Computer Science, Stony Brook University, 2015.

[42] Jesmin Jahan Tithi, Pramod Ganapathi, Aakrati Talati, Sonal Aggarwal, and Rezaul
Chowdhury. High-performance energy-e�cient recursive dynamic programming with matrix-
multiplication-like flexible kernels. In IPDPS, pages 303–312, 2015.

[43] Shmuel Winograd. On computing the discrete fourier transform. Mathematics of computation,
32(141):175–199, 1978.

30

https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.110%29.aspx
https://www.threadingbuildingblocks.org

6 Appendix

6.1 n"-way Merge Sort

In this section, we present a simple merge-based parallel sorting algorithm parameterized on a fixed
constant " 2 (0, 1], which achieves the span of O (("+ 1/") log n) but performs suboptimal work of
O
�
(1/")n1+"

�
. We call this algorithm n"-Way-Sort .

n! -Way-Sort (A, n, ")

Require: 1/" is a natural number

1. if " = 1 then Sort A[1..n] in O
�
n2

�
work and O (log n) span and return

2. r n!

3. Split A[1..n] into r segments A1, ..., Ar , each of size n/r

4. parallel for k 1 to r do Sort (Ak , n/r, "/(1� "))

{ Merge the r sorted segments } .

5. parallel for i 1 to r do

6. parallel for j i+ 1 to r do

7. Merge Ai and Aj , each of size n/r, in O (n/r) work and O (log(n/r)) span

ranki [k, j] position of Ai [k] in Aj using the merged list of Ai and Aj , for all k 2 [1, |Ai |]

rankj [k, i] position of Aj [k] in Ai using the merged list of Ai and Aj , for all k 2 [1, |Aj |]

8. parallel for k 1 to r do

9. parallel for i 1 to |Ak | do

10. rankk [i] Array-Sum (rankk [i, 1..r]) ! position of Ak [i] in the merged list of A1, A2, . . . , Ar

11. B[rankk [i]] Ak [i]

12. parallel for i 1 to n do A[i] B[i]

Figure 11: The n"-way sorting algorithm.

Figure 11 gives a pseudocode of the sorting algorithm. Choose a fixed constant " 2 (0, 1]
such that 1/" is a natural number and suppose that r = n". The input array A[1..n] is split into
r subarrays, each having n/r elements. All r subarrays are sorted recursively. These r sorted
subarrays are then merged. The merging process consists of two stages.

In the first stage, we compute ranki[k, j] in parallel, for i 2 [1, r], j 2 [i+1, r], and k 2 [1, |Ai|],
where ranki[k, j] represents the rank or position of Ai[k] (the kth element of subarray Ai) in Aj

during the process of merging. Similarly, we compute rankj [k, i] in parallel. We do not need to
store the merged list. We simply need to find the ranks of di↵erent elements of the array segments
in O (n) time and O (log n) span, which is easy to achieve.

In the second stage, we compute rankk[i] in parallel, for k 2 [1, r] and i 2 [1, |Ak|], where
rankk[i] represents the position of Ak[i] (the kth element of subarray Ai) in the merged list of the
r subarrays A1, A2, . . . , Ar. We then use these values to sort A by corresponding assignments.

Lemma 6.1. n"-Way-Sort has a complexity of O
�
(1/")n1+"

�
work and O (("+ 1/") log n) span,

for " 2 (0, 1].

Proof. The work and span recurrences for the algorithm are:

T1(n, ")

(
c1n2 if " = 1,

n"T1(n1& ", "
1& ") + c2n1+" if " 6= 1.

T! (n, ")

(
c(
1 log n if " = 1,

T! (n1& ", "
1& ") + c(

2 log n if " 6= 1.

31

Expanding the recurrences and setting k = 1/"� 1, we get

T1(n, ") n"

n"T1(n

1& 2",
"

1� 2"
) + c2n

�
+ c2n

1+" = n2"T1(n
1& 2",

"

1� 2"
) + 2c2n

1+"

 n2"

n"T1(n

1& 3",
"

1� 3"
) + c2n

1& "
�
+ 2c2n

1+" = n3"T1(n
1& 3",

"

1� 3"
) + 3c2n

1+"

 nk"T1(n
1&k",

"

1� k"
) + c2kn

1+" = n1& "T1(n
", 1) + c2kn

1+"

 n1& "(n")2 + c2kn
1+" = n1+" + c2kn

1+" = O

✓
1

"
n1+"

◆

T! (n, ") T! (n1&k",
"

1� k"
) + c(

2 log n [1 + (1� ") + (1� 2") + · · ·+ (1� (k � 1)")]

= T! (n1&k",
"

1� k"
) + c(

2 log n⇥
k

2
[2� (k � 1)"]

= T! (n", 1) + c(
2(
1

"
+ 1� 2") log n c(

1 log n
" + c(

2(
1

"
+ 1) log n = O

✓
("+

1

"
) log n

◆

6.2 d-D FFT

In this section, we develop a straightforward generalization of the
p
n-way FFT used in theo-

rem 4.3. Instead of splitting up an FFT y[i] =
Pn& 1

j=0 a[j]w
& ij
n into two nested sums y[i] =

P'
n& 1

j1=0

P'
n& 1

j2=0 a[j1 +
p
nj2]w

& i(j1+
'
nj2)

n , we will break it into d nested sums

y[i] =

d' n& 1X

j1=0

· · ·

d' n& 1X

jd=0

a

"
dX

k=1

jkn
(k& 1)/d

#
w

& i
! d

k=1 jkn
(k" 1)/d

n .

Lemma 6.2. The d-D-FFT algorithm takes O (dn log n) work and O (d log n logd log n) span to
run on an array of size n.

Proof. The code given in Figure 12 shows the structure of the algorithm being used. We reindex the
array as a column-major d-D hypercube with side length d

p
n; for every dimension we recursively

apply d-D-FFT across all n1& 1/d subarrays found by holding all but one of the d indices constant,
followed by a single pointwise multiplication by twiddle factors. The recurrences from this for work
and span are

T1(n) =

(
O (1) if n 1

d n1& 1/dT1(n1/d) +O (dn) if n > 1
,

T! (n) =

(
O (1) if n 1

d T! (n1/d) +O (d log n) if n > 1
,

the solutions to these are given by T! (n) = O (d log n logd log n) and T1(n) = O (dn log n).

32

d-D-FFT (A, n)

1. if n = 1 return A

2. for k 1 to d
p
n do

3. parallel for j1 1 to d
p
n� 1 do

...

4. parallel for bjk 1 to d
p
n� 1 do {this line omitted}

...

5. parallel for jd 1 to d
p
n� 1 do

6. d-D-FFT (A[
Pd

k " =1 jk "n(k ! 1) /d], n(k ! 1) /d) {where the array is indexed over jk}

7. Multiply A[...] by twiddle factors

8. return A

Figure 12: The d-D FFT algorithm.

FFT (X,n)

(Input is a vector of length n = 2k for some integer k � 0. Output is the in-place FFT of X.)

1. Base Case: If n is a small constant then compute FFT using the direct formula and return.

2. Divide-and-Conquer:

(a) Divide: Let n1 = 2d
k
2 e and n2 = 2b

k
2 c. Observe that n2 2 {n1, 2n1}.

(b) Transpose: Treat X as a row-major n1 ⇥ n2 matrix. Transpose X in-place.

(c) Conquer: for i 0 to n2 � 1 do FFT (X [i⇥ n1, i⇥ n1 + n1 � 1] , n1)

(d) Multiply: Multiply each entry of X by the appropriate twiddle factor

(e) Transpose: Treat X as a row-major n2 ⇥ n1 matrix. Transpose X in-place.

(f) Conquer: for i 0 to n1 � 1 do FFT (X [i⇥ n2, i⇥ n2 + n2 � 1] , n2)

(g) Transpose: Treat X as a row-major n1 ⇥ n2 matrix. Transpose X in-place.

(h) return X

Figure 13: The generic FFT algorithm.

Strassen (U, V, n)

1. if n = 1 then return U [0]⇥ V [0]

{ Divide } .

2. Ur 1 U11 + U12; Ur 2 U21 + U22; Uc1 U21 � U11; Uc2 U12 � U22; Ud1 U11 + U22

3. Vr 1 V11 + V12; Vr 2 V21 + V22; Vc1 V21 � V11; Vc2 V12 � V22; Vd1 V11 + V22

{ Conquer } .

4. P1 Strassen (Ud1, Vd1, n/2); P2 Strassen (Ur 2, V11, n/2); P3 Strassen (U11, Vc2, n/2)

5. P4 Strassen (U22, Vc1, n/2); P5 Strassen (Ur 1, V22, n/2); P6 Strassen (Uc1, Vr 1, n/2)

6. P7 Strassen (Uc2, Vr 2, n/2)

{ Merge } .

7. Allocate X

8. X11 P1 + P4 � P5 + P7; X12 P3 + P5; X21 P2 + P4; X22 P1 � P2 + P3 + P6

9. return X

Figure 14: Strassen’s MM algorithm.

33

	1 Introduction
	2 Strassen's Matrix Multiplication
	3 Sorting
	4 Fast Fourier Transform
	5 Conclusion
	6 Appendix
	6.1 n-way Merge Sort
	6.2 d-D FFT

